| 
                     
                      | Teoremes 
                        Fonamentals de l'electrònica |   
                      |  |  |   
                      |  |  |   
                      |  |  |   
                      |  |  |  |  | 
               
                | Unitat 
                  0.0. Introducció. |  | 
               
                | Electró. 
                    Gira al voltant del nucli gràcies a la força d’atracció que 
                    aquest exerceix sobre ell. La seva càrrega elèctrica és negativa 
                    i té una massa de 9,1091 · 10 –31 kg. Protó. 
                    Es troba al nucli dels àtoms i té una càrrega elèctrica idèntica 
                    als electrons però de signe contrari. (carrega positiva). 
                    La seva massa és molt superior a la d’electró, gairebé 2000 
                    vegades. (1836,11)  Neutró. 
                    També es troba al nucli i té una massa similar al protó però, 
                    no té càrrega elèctrica. Els 
                    àtoms en equilibri tenen el mateix número d’electrons 
                    que de protons restant elèctricament neutres. 
                    Quan un àtom perd un electró, es converteix 
                    en un IÓ POSITIU, ja que el nombre de protons 
                    és superior al d’electrons, i tindrà una càrrega positiva. 
                    Quan la capa de valència guanya un electró, 
                    parlarem d’un IÓ NEGATIU, i direm que és 
                    elèctricament negatiu. | Els 
                    Àtoms. Tot 
                    fenòmen elèctric té com a base l’estructura atòmica 
                    dels 107 elements o cossos simples que es poden trobar a la 
                    natura. Un àtom es pot dividir en dues parts: el nucli ( neutrons 
                    i protons) i l’escorça ( electrons). És cert que podem 
                    trobar més partícules subatòmiques com ara: els positrons, 
                    els neutrins, els mesons, els antiprotons...però per ara només 
                    ens interessen el nucli i els electrons.  | 
               
                | Càrrega 
                    elèctrica.Tot 
                    cos està elèctricament càrregat, la seva càrrega només dependrà 
                    del nombre d’electrons que té. Com 
                    què l’electró té una càrrega elèctrica molt petita es fa servir 
                    el Coulomb (C), (sistema internacional) 1C = 6,24 · 10 18 
                    electrons. |  | 
               
                | Energia 
                    potencial elèctrica. Serà 
                    el treball necessari per transportar una càrrega elèctrica 
                    dins un camp magnètic. |  | 
               
                | Potencial 
                    elèctric. El 
                    potencial elèctric ( en volts) (V) d’un punt, és directament 
                    proporcional a l’energia potencial elèctrica ( en joules ) 
                    (J) d’aquest punt, i inversament proporcional a la Càrrega 
                    elèctrica del mateix. |  | 
               
                |   |  | 
               
                | Diferència 
                    de potencial. La 
                    diferència de potencial entre dos punts és, el treball que 
                    cal fer per traslladar una càrrega des d’un punt a l’altre. |  | 
               
                |   |  | 
               
                | Conductor. 
                    Entendrem com a conductor, tot material 
                    que permeti el pas del corrent elèctric a traves seu. Els 
                    millors conductors són els metalls. En ells, l’enllaç electrònic 
                    és metàl·lic, el que fa que alguns electrons queden lliures, 
                    facilitant així el pas de nous electrons a traves seu. Aïllant, 
                    dielèctric o no conductor. Serà 
                    tot material que no permeti el pas del corrent elèctric a 
                    traves seu. Quan per un material dielèctric passi corrent, 
                    direm que el material ha perdut les seves propietats dielèctriques. 
                   Semiconductors. 
                    Alguns 
                    materials com ara el silici, el germani, el seleni, s’uneixen 
                    entre ells mitjançant enllaços covalents, ( Els àtoms comparteixen 
                    electrons de l’ultima capa, la de valència, per tenir una 
                    estructura més estable, però és fàcil que quedin electrons 
                    lliures, el que facilita el pas del corrent en determinades 
                    circumstancies). |  | 
               
                | Circuit 
                    elèctric. |  | 
               
                |  |  | 
               
                | Intensitat 
                    del corrent elèctric. Entenem 
                    per intensitat del corrent elèctric el pas d’electrons a través 
                    d’un cos conductor. Convencionalment el sentit d’aquest 
                    corrent és des del pol positiu al negatiu d’un circuit, però 
                    recordem que el corrent és un moviment electrònic ( electró 
                    = càrrega negativa) així que en la realitat ho fa en sentit 
                    contrari.  La 
                    intensitat del corrent elèctric és la quantitat d’electrons 
                    que passa per la secció transversal d’un medi conductor en 
                    la unitat de temps. |  | 
               
                |   |  | 
               
                | Un 
                    corrent serà continu i constant, quan el flux 
                    d’electrons sigui sempre el mateix i circuli en un sol sentit.  Un 
                    corrent serà continu i variable, quan el flux 
                    d’electrons sigui variable però sempre amb el mateix sentit 
                    de circulació.  Un 
                    corrent serà altern quan el flux i el sentit 
                    de circulació siguin alterns. Els més emprats són el tipus 
                    sinusoïdal i el polsatori. |  | 
               
                | Tot 
                    generador doncs, cedirà a un circuit elèctric una Força 
                    Electromotriu (f.e.m.) en volts (V). 
                   Generarem 
                    electricitat a partir de: la Inducció Electromagnètica 
                    ( alternadors i dinamos principalment, tot conductor en moviment 
                    dins un camp magnètic crea una f.e.m.), Reaccions Químiques 
                    ( a les piles i bateries  es crea una diferència de potencial 
                    entre l’electròlit i les plaques submergides en ell), Reaccions 
                    Fotovoltaiques ( la radiació lluminosa quan incideix 
                    en alguns materials com el silici, liti, seleni,..., fa que 
                    aparegui una petita d.d.p. entre punts del material, aquest 
                    és el principi de les cèl·lules fotovoltaiques), Efectes 
                    piezoelèctrics ( quan deformem mecànicament ( pressió 
                    ) el cristall de quars o la turmalina a les seves cares apareix 
                    una d.d.p.), Reaccions Termoelèctriques ( un 
                    termopar és la unió de dos fils conductors - el coure i el 
                    constatà per exemple - en un dels seus extrems, si escalfem 
                    aquesta unió, a l’altre extrem apareix una d.d.p. entre els 
                    dos conductors).  Aquesta 
                    força electromotriu (f.e.m.) no és res més que 
                    el treball desenvolupat pel generador sobre la unitat de càrrega 
                    que circula a traves seu. | Generadors. 
                    Direm 
                    generador als dispositius que mitjançant l’acció 
                    d’una font d’energia primària obtinguin energia elèctrica 
                    mantenint sempre una diferència de potencial als seus borns 
                    el més constant possible.  | 
               
                |   |  | 
               
                | Aquesta 
                    f.e.m. no podrem mesurar-la directament, però si la 
                    Diferència de Potencial (d.d.p.) (V) entre els seus 
                    borns. |  | 
               
                | Per 
                    a què aquests funcionin, han d’ésser travessats per la intensitat 
                    del corrent elèctric, però no tots en faciliten aquest pas. 
                    Entendrem com a Resistència elèctrica, l’oposició 
                    dels cossos a ésser travessats pel corrent elèctric, 
                    i es mesurarà en ohms ( W ). Aquesta 
                    oposició dependrà principalment de naturalesa del cos ( resistivitat 
                    ) ( r ) en (W·m), 
                    de la seva longitud ( l ) en (m) i de la secció travessada 
                    ( s ) en (m2). | Receptors. 
                    Direm 
                    Receptors als dispositius capaços de transformar 
                    l’energia elèctrica en energia útil. Tot aparell connectat 
                    elèctricament a una pila, endoll,.., es pot considerar un 
                    receptor. | 
               
                |   |  | 
               
                |  |  | 
               
                |  |  | 
               
                |  |  | 
               
                | Unitat 
                  0.1. Tensió, Resistència i Intensitat. Llei d’Ohm. |  | 
               
                | La 
                    relació entre aquestes tres magnituds l’estableix la llei 
                    d’Ohm. Aquesta ens diu: Que el voltatge o la 
                    diferència de potencial entre dos punts d’un circuit és directament 
                    proporcional a la resistència elèctrica existent entre aquests 
                    punts i al corrent elèctric que els travessa. |  | 
               
                |  | 
               
                | L’aparell 
                    que mesurarà la tensió o la diferència de potencial 
                    entre dos punts és el voltímetre. Aquest el 
                    connectarem en paral·lel als punts que vulguem mesurar. |  | 
               
                | L’aparell 
                    que mesurarà la intensitat del corrent elèctric 
                    que travessa un receptor o la que dona un generador és l’amperímetre. 
                    Aquest el connectarem en sèrie amb el circuit ja que el corrent 
                    que volem mesurar l’ha de travessar. |  | 
               
                | L’aparell 
                    que mesurarà directament la resistència d’un 
                    circuit o d’un receptor ( en aquest cas un resistor) és l’ohmetre. 
                    Aquest aparell porta generalment una pila per realitzar les 
                    mesures, així que quan realitzem una mesura haurem de desconnectar 
                    el generador del circuit per no danyar l’aparell de mesura. Generalment 
                    la resistència es calcula indirectament, ja que si sabem la 
                    intensitat del corrent elèctric i el voltatge en borns d’un 
                    circuit o en els d’una resistència podrem saber-ne aquesta 
                    gràcies a la llei d’Ohm. |  | 
               
                | Unitat 
                  0.2. Llei de Joule. Potència Elèctrica. |  | 
               
                | Entendrem 
                    com a Potència Elèctrica l’energia consumida o produïda 
                    per unitat de temps. |  | 
               
                |  | 
               
                | Segons 
                    la Llei de Joule, en tot circuit travessat 
                    per un corrent elèctric es produeixen pèrdues de potència 
                    degudes a l’escalfor provocada pel pas d’electrons per un 
                    conductor, receptor,... Aquestes 
                    pèrdues les denominarem Pèrdues de Potència per efecte 
                    Joule.  |  | 
               
                |  |  | 
               
                |  | L’aparell 
                    que mesurarà directament la potència d’un circuit 
                    o d’un receptor ( en aquest cas un resistor) és el wattímetre. 
                     | 
               
                |  |  | 
               
                | Unitat 
                  0.3. Associació de Resistències en Sèrie. |  | 
               
                |  | Entendrem 
                    que dos o més resistències estan associades en sèrie 
                    quan la sortida de la primera resistència s’uneixi a l’entrada 
                    de la segona i així successivament, restant una resistència 
                    equivalent que serà la suma de totes elles, amb borns 
                    d’entrada: l’entrada de la primera i la sortida de la darrera. | 
               
                | Unitat 
                  0.4. Associació de Resistències en Paral·lel. |  | 
               
                |  | Entendrem 
                    que dos o més resistències estan associades en paral·lel 
                    quan l’entrada de totes elles estiguin unides entre 
                    si, formant l’entrada de la resistència equivalent, de 
                    la mateixa manera s’uniran totes les sortides en un sol punt. 
                    La resistència equivalent que serà: l’invers de la resistència 
                    total serà igual al sumatori de les inverses de les resistències. | 
               
                | Unitat 
                  0.5. Associació Mixta de Resistències. |  | 
               
                |  | L’associació 
                    mixta de resistències és la combinació de les dues associacions 
                    anteriors la sèrie i la paral·lel. Per resoldre aquest 
                    tipus d’exercicis hauràs de simplificar les associacions obtenint 
                    les resistències equivalent i calculant segons cada cas.   | 
               
                | 
                     
                      |  |  |   
                      | R6+7 
                        = R 6+ R7 = RS2 |  |   
                      | 1/(Rs1// 
                        Rs2 )= (1/Rs1 )+(1/ R s2) |  |   
                      | Quan 
                        hi ha dos i només dos resistències |  |   
                      | Rs1// 
                        Rs2 = Rs1 ·R s2 / Rs1 
                        +R s2 =RP1 |  |   
                      | 1/(R2 
                        // R3 )= (1/R2 )+(1/ R 3) |  |   
                      |  |  |   
                      |  |  |   
                      |  |  |   
                      | Quan 
                        hi h dos i només dos resistències |  |   
                      | (R2 
                        // R3 )= R2 ·R 3 / R2 
                        +R 3 =RP2 |  |   
                      | RT 
                        = RP1 + Rp2 | VR7= 
                        RR7 · IR7 |   
                      |  |  |  |  
                    
                       
                        |  |  |   
                        |  |  |   
                        | IT=IRP2 
                          = IR2 + IR3 |   
                        |  |   
                        | VRp2= 
                          VR2 = VR3 |   
                        | IR2 
                          = VR2/R2 |   
                        | IR3 
                          = VR3/R3 |  | 
               
                | Unitat 
                  0.6. Teoremes de Kirchhoff. |  | 
               
                | El 
                    sentit del corrent en un nus serà el que marqui la fem. El 
                    sentit convencional del corrent elèctric a les malles serà 
                    el de les agulles del rellotge. Sí un corrent de malla dona 
                    negatiu voldrà dir que el seu sentit és el contrari. En 
                    una resistència mirarem sempre la influència del corrent de 
                    malla i la influencia del corrent dela  malla del costat sí 
                    hi ha. Si el sentit és el mateix se sumarà i si és el contrari 
                    es restarà. | A 
                    més a més de la llei d’Ohm, podrem fer servir els Teoremes 
                    de Kirchhoff per resoldre exercicis més complexos, on 
                    hi ha moltes incògnites. Cal recordar que per resoldre un 
                    problema amb múltiples incògnites, cal muntar un sistema d’equacions. 
                    Aquí els teoremes de Kirchhoff ens ajudaran.  | 
               
                | 
                     
                      |  |   
                      | El 
                          sumatori de intensitats de corrent entrants en un nus 
                          és igual al sumatori d’intensitats de corrent sortints. I1=I2+I3+I4 I2+I3+I4=I5 |  | 1er 
                    Teorema de Kirchhoff. El Teorema dels nusos. Entendrem 
                    com a nus el punt d’unió físic de varis conductors. | 
               
                | 
                     
                      |  |   
                      | En 
                        una malla – circuit tancat - el sumatori de les forces 
                        electromotrius – generadors, piles- és igual al sumatori 
                        de caigudes de tensió als receptors – productes V=R·I 
                        -. Malla 
                          n º 1. V1=R1·I1+R4·I1+R5·I1-R4·I2 Malla 
                          n º 2. 0V=R3·I2+R4·I2-R4·I1-R3·I3 Malla 
                          n º 3. 0V=R2·I3+R3·I3-R3·I2 |  | 2on 
                    Teorema de Kirchhoff. El Teorema de les malles. Entendrem 
                    com a malla qualsevol circuit o part d’aquest, en el qual 
                    podem partir d’un punt i tornar a aquest sense passar dues 
                    vegades pel mateix lloc.. | 
               
                | Unitat 
                  0.7. Teoremes de Thévenin i Norton. |  | 
               
                | Teorema 
                    de Thévenin |   | 
               
                |  | Tot 
                    circuit elèctric, amb dos terminals A i B, es pot 
                    substituir per un circuit equivalent format 
                    per una resistència equivalent de Thévenin RTH  
                    en sèrie amb una font equivalent de Thévenin VTH 
                    sense resistència interna. | 
               
                |  | La 
                    tensió equivalent de Thévenin és la diferència de 
                    potencial entre els borns A i B, en circuit obert, es a dir 
                    sense la resistència entre els borns A i B. 
                     | 
               
                | La 
                    resistència de Thévenin es la resistència vista des 
                    de els terminals A i B, quan totes les fonts d’alimentació 
                    han estat curt circuitades. 
                     | 
               
                | Teorema 
                    de Norton. |  | 
               
                |  | Tot 
                    circuit elèctric, amb dos terminals A i B, es pot 
                    substituir per un circuit equivalent format 
                    per una resistència equivalent de Norton RN  
                    en paral·lel amb una font equivalent de Norton VN 
                    sense resistència interna. | 
               
                |  | El 
                    corrent equivalent de Norton és el corrent que circularia 
                    entre els borns A i B, si en la resistència de càrrega es 
                    produís un curt circuit. | 
               
                | La 
                    resistència de Norton es la resistència vista des 
                    de els terminals A i B, quan totes les fonts d’alimentació 
                    han estat curt circuitades o substituïdes per la seva resistència 
                    interrna. | 
               
                |  | Activitats | 
               
                | Activitats 
                    de Teoremes Fonamentals.  |  | 
               
                |  | by 
                    Jordi Jordan |