Groups of experts tasks
A
$3^{2}=3.3$
\qquad to the power of \qquad equals \qquad multiplied by \qquad
$3^{5}=3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$
\qquad to the power of \qquad equals \qquad multiplied by
multiplied by \qquad multiplied by \qquad multiplied by \qquad $3^{7}=3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3=$
\qquad to the power of \qquad equals \qquad multiplied by \qquad
It can be written by using brackets as follows

$(3 \cdot 3) \cdot(3 \cdot 3 \cdot 3 \cdot 3 \cdot 3)$

And expressed with exponents
$3^{2} \cdot 3^{5}=3^{2 \ldots 5}$
Another example can be \qquad
(make up an example with different base and different exponent and check it)

So the general rule is

$$
\mathbf{a}^{\mathrm{x}} \cdot \mathbf{a}^{\mathrm{y}}=\mathbf{a}^{\mathrm{x} \ldots \mathrm{y}}
$$

that can be read as:
In a product of powers with the same \qquad
you leave the same \qquad and \qquad the exponents

Groups of experts tasks

B

$$
3^{2}=3 \cdot 3
$$

\qquad to the power of \qquad equals \qquad multiplied by \qquad $3^{5}=3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$
\qquad to the power of \qquad equals \qquad multiplied by \qquad multiplied by \qquad multiplied by \qquad multiplied by \qquad $3^{7}=3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$
\qquad to the power of \qquad equals \qquad multiplied by \qquad
$3^{7}: 3^{5}=$
can be written as
3.3.3.3.3.3.3:(3.3.3.3.3) =
you can group factors
$(3 \cdot 3) \cdot(3 \cdot 3 \cdot 3 \cdot 3 \cdot 3):(3 \cdot 3 \cdot 3 \cdot 3 \cdot 3)=$
(3.3). $1=$
$3 \cdot 3=$
$3 \cdot 3=3^{2}$
$3^{7}: 3^{5}=3^{7 \ldots 5}$
Another example can be \qquad _
(make up an example with different base and different exponent and check it)

So the general rule is

$$
a^{x}: a^{y}=a^{x \ldots y}
$$

that can be read as:
In a division of powers with the same \qquad
you leave the same \qquad and \qquad the exponents

Groups of experts tasks

C

$$
3^{2}=3.3
$$

\qquad to the power of \qquad equals \qquad multiplied by \qquad
$(3 \cdot 3)^{5}=(3 \cdot 3) \cdot(3 \cdot 3) \cdot(3 \cdot 3) \cdot(3 \cdot 3) \cdot(3 \cdot 3)$
\qquad multiplied by \qquad to the power of \qquad equals \qquad multiplied by \qquad multiplied by
\qquad multiplied by \qquad multiplied by \qquad

It can be written without the brackets as follows

$\mathbf{3} \cdot \mathbf{3} \cdot \mathbf{3}$

Written as a power this is

3…

Finally it can be expressed with exponents
$\left(3^{2}\right)^{5}=3^{2 \ldots 5}$
Another example can be \qquad
(make up an example with different base and different exponent and check it)

So the general rule is

$$
\left(a^{x}\right)^{y}=a^{x \ldots y}
$$

that can be read as:
In a power of another power
you leave the same \qquad and \qquad the exponents

Groups of experts tasks

D

$(5 \cdot 3)^{2}=(5 \cdot 3) \cdot(5 \cdot 3)=5 \cdot 3 \cdot 5 \cdot 3$
\qquad to the power of \qquad equals \qquad multiplied by \qquad multiplied by \qquad multiplied by \qquad multiplied by \qquad
$5 \cdot 3 \cdot 5 \cdot 3=5 \cdot 5 \cdot 3 \cdot 3$
\qquad multiplied by \qquad multiplied by \qquad multiplied by \qquad multiplied by \qquad can be reorganised as \qquad multiplied by
\qquad multiplied by \qquad multiplied by \qquad multiplied by \qquad
$5 \cdot 5 \cdot 3 \cdot 3$
It can be written by using brackets as follows
$(5 \cdot 5) \cdot(3 \cdot 3)$
And expressed with exponents

$$
(5 \cdot 3)^{2}=5^{2} \cdot 3^{2}
$$

Another example can be \qquad
(make up an example with different base and different exponent and check it)

So the general rule is

$$
(a \cdot b)^{x}=a \cdots \cdot b \cdots
$$

that can be read as:
In a power of a product you raise each factor to the same
\qquad and then you \qquad the powers

