Mathematics CLIL Project IES La Segarra (Cervera)

Imma Romero Garcia
December 2007

IES La Segarra (Cervera)

Cervera

-SITUATION

$>60 \mathrm{~km}$ from Lleida
-POPULATION
>about 9000
>immigration 9\%
-ECONOMY
>agriculture
$>$ farm industry
$>$ services

IES La Segarra (Cervera)

- 400 STUDENTS
- OFFERS
- ESO
- BATXILLERAT

- CFGM
- CFGS
- PROJECTS
- PLA PER A LA MILLORA DE LA QUALITAT DEL SERVEI EDUCATIU
- PROJECTE D' INNOVACIÓ EDUCATIVA

```
TIC
LLENGÜES ESTRANGERES 2007/2010
```


English is our choice

	Action	Courses	Groups	Time
1. Technology	1.1 Workshop	$2^{\text {nd }}$ ESO	All	$1 \mathrm{~h} /$ weekly
2. Other areas	2.1 Warming up \& relaxing exercises PE	$3^{\text {rd }} \& 4^{\text {th }}$ ESO	All	$20 \mathrm{~min} /$ weekly
	2.2 Software in ICT modules	$\begin{aligned} & 1^{\text {st }}, 2^{\text {nd }} \& 4^{\text {th }} \\ & \text { SSO } \end{aligned}$	All	-
	2.3 Latin texts translation and Latin culture aspects	$\begin{aligned} & 1^{\text {st }} \& 2^{\text {nd }} \\ & \text { Batxillerat } \end{aligned}$	Humanistic	25% of the subject
	2.4 Abstract in "Treball de Recerca"	$\begin{aligned} & 1^{\text {st }} \& 2^{\text {nd }} \\ & \text { Batxillerat } \end{aligned}$	All	-
	2.5 Technical vocabulary \& the electromechanical instruction manual	5 \& 6 modules	$1^{\text {st }} \& 2^{\text {nd }}$ of electromechanical \& vehicles GFGM	$30 \mathrm{~h} /$ course
	2.6 Telephone calls \& costumer service	1 module	Administrative GFGM	$15 \mathrm{~h} /$ course
	27 Mathematics From sequences to Functions	$3{ }^{\text {rd }}$ ESO	All	$35 \mathrm{~h} \%$ course

Mathematics CLIL Project

- Module

From Sequences to Functions (35 h)

- Units

Unit 1: Sequences and Series
Unit 2: Functions
Unit 3: Linear functions

- Level

3rd ESO

- Time
$2^{\text {nd }}$ Term
- Lesson 1:

Introducing sequences

- Lesson 2:

Recurrence

- Lesson 3:

Basics of Arithmetic and Geometric sequences

Tools to build the CLIL Project

- 4Cs
- 3As
- CLIL Matrix
- Bloom's Taxonomy
- Maths: a science that contributes to society
- Maths and real life
- Reasoning
- Criticism
- Importance of philosophers, researchers and mathematicians
- Looking at the students' needs
- Encouraging students' self-esteem
- Variety of activities and instruments of evaluation
- Use of ICT to build and to structure mathematic contents

Unit 1: Sequences and Series

Cognition

Culture

Content

Communication

Tasks and Activities

'I think I could, if I only knew how to begin (...) Alice had begun to think that very few things indeed were really impossible.'

Lewis Carroll

Introducing theory

Definition $2 \Rightarrow$ An arithmetic series is an A.P. where we ADD each term of the A.P. In other words, if you look at the A.P. of hours and replace the commas with plus signs you get:

$1+2+3+4+5+6+7+8+\ldots$

Imagine trying to add ALL of the terms in the sequence of odds numbers! You couldn't do it. (It would add up to infinity.) However, you WILL be asked to add up a set number of terms in a series. The formula to help you do this is:

$$
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

Reading

Introduction
2) Let's read.

Work in Groups

- Why is the number Phi important?
- Can you demonstrate that Phi derives from the Fibonacci sequence? Calculate this number according to the text.
- Write down two or three examples of Phi in nature, in architecture and in music.
- With a tape measure, try to prove that the human body is a tribute to the Divine Proportion.

$4{ }_{7}^{2}$
 Speaking

Writing

Explaining a process

8) Write down the rule for obtaining the next term in each of the following:

* ${ }^{*}$. $\mathrm{n}=100,96,92,88, \ldots$

The next term is obtained by subtracting four from the preceding term
莱 $\mathrm{Bn}=1,4,9,16 \ldots$
The next term is obtained \qquad

* $\mathrm{Cn}=-3,-6,-12,-24 \ldots$

The next term

* $\operatorname{Dn}=64,32,16,8 .$.

The next

* ${ }^{*} \mathrm{En}=1,10,100,1000$...

洆 $\mathrm{Fn}=100,90,81,73 \ldots$

(C) The wheat and the chessboard

One of the earliest mentions of Chess in puzzles is by the Arabic mathematician Ibn Kallikan who, in 1256, poses the problem of the grains of wheat, 1 on the first square of the chessboard, 2 on the second, 4 on the third, 8 on the fourth etc.

How many grains of wheat are there?

Try to organize your work. In pairs decide your strategy and write it down.

In a chessboard there are ...squares.
We need to find...
First we ... second...
Finally...

The sequence of grains of wheat is...
We have to use the formula...

The first term in the sequence is...
The common ratio is...

Graph of Arithmetic and Geometric Progressions You are now going to use the computer to generate and represent progressions. Chose an arithmetic and a geometric progression and represent them in a Calc Spreadsheet. I give you an example.

What are the differences between the two graphs? Discuss with a partner.

Comparing and describing graphs

Why did Robin Hood steal from the rich?
Find the answer with the help of sequences!!

Find the missing number in each of the following:

E $2,4,6,8,10,12$
C $0,4,8,12,16, \ldots \ldots$
A __ $7,9,11,13$.
U $10,15,20$, —...
I 3,6,9,
N 25,20,15,_5,...
B $12,10,8,6, \ldots \ldots$...
D $1,1,2,1,1,2,1$,
S 5.10, - 20 ,...
O $3,4,3,3,4,4,3,3,4,4,4$.
T $10,12,14, \ldots 18, \ldots$
R $10,20,30,40, ~ 60$,..
U $1,4,7,10,16, \ldots$
从 2,6,10,14,_22,..
H 15, 12,9, _3,...
P 3, 8, 13, 18,_, 28 ,
Y $14,10,6$,

Now complete the secret message and you will find the answer by writing each letter in its right place:

- - - -- -- $-\underline{E}-\ldots$
$\begin{array}{llllllllllll}1 & 12 & 1 & 10 & 16 & 6 & 5 & 25 & 8 & 5 & 10 & 2\end{array}$
$---\underline{E}$
$\begin{array}{lllll}18 & 3 & 10 & 8 & 2\end{array}$

Applying

Revision and Assessment

Literature

Art and Science

Maths and Culture

Legends

Mathematicians and philosophers

