Teaching notes

$\left[\begin{array}{c}n \\ a\end{array}\right.$
The notes below are only some suggestions that teachers could bear in mind when using these materials. It is not my intention to interfere in your teaching methodology, so I have only written few explanations in order to share some ideas.

At the end of this document you can find a few questions for students to assess the teaching process and some of the websites I have used.

Hope it is useful.
iromero5@xtec.cat

Lesson 1: Introducing sequences

- Activities 1, 2 and 3

These three activities are an introduction to the topic and try to transmit to students the importance of ordering numbers, words, objects, and letters...

They can be done in plenary or in little groups. Teacher decides the time spent in each one.

- Activity 5

This activity could be used to introduce the concepts of triangular numbers and square numbers, if students don't know, by using patterns and drawing. This is an example.

Design Number	1	2	3	4	5	6	7
matches	1	4					

RULE :

\qquad

number	1	2	3	4	5	6	7	8
matches								

\qquad

Triangle number	1	2	3	4	5	6
Number of counters						

Crystal number	1	2	3	4	5	6
Number of ions						

RULE : \qquad

The diagrams below show how to draw a 'mystic rose'.

(a) Draw three different mystic roses.
(b) How many straight lines are in each of your designs?
(c) How many lines would be in a 20-point mystic rose?
(d) Find a rule for the number of lines in a n-point mystic rose.

Students can draw the snowflake pattern in an isometric paper and write down the sequence of numbers of sides.

Finally students can play with the cards below. (www.senteacher.org)

even numbers

powers of 2

prime numbers

natural numbers

square numbers

- Activities such as 8, 10 and 11

They could be done part in class and part as homework.

- Activities 13 and 14

These activities have to be developed in the multimedia classroom. For that reason the teacher has to do all the session in this room.

IES La Segarra (Cervera)

Teaching notes

- Experiment 1: Making power with our hands

In order to solve this problem, students can make a chart as shown below

Number of cuts	Number of pieces	Previous number of pieces $\times 2$
0	1	
1	2	$1 \times 2=2$
2	4	$2 \times 2=4$
\ldots	\ldots	\ldots

They can see that the number of layers increases.

- Teacher can explain to students that the thickness of a sheet is approximately 0.08 mm and if we fold it 42 times the thickness is approximately the distance between the Earth and the moon, 351.000 km.
- Britney Gallivan has solved the Paper Folding Problem.
http://en.wikipedia.org/wiki/Britney_Gallivan
- Activity 15

Why did Robin Hood steal from the rich?
The answer is: BECAUSE THE POOR DIDN'T HAVE ANY MONEY

- Activity 16

This activity could be used to sum up the content of the lesson.
Teacher could use the next domino to reinforce the vocabulary in this unit

Imma Romero
IES La Segarra (Cervera)

In pairs students can ask each other the translation of the words below. Each student has a card ands asks both in Catalan and in English.

SEQUENCE	TERME	TERM	PARELL
EVEN	IMPARELL	ODD	POTĖNCIES DE...
POWERS OF...	SUMAR	ADD	RESTAR
SUBTRACT	MULTIPLICAR PER	MULTIPLY BY	DIVIDIR PER
DIVIDE BY	INFINIT	INFINITE	FINIT
FINITE	CREIXENT	INCREASING	DECREIXENT
DECREASING	TERME GENERAL	NTH TERM	FULL DE CÀLCUL
SPREADSHEETS	GRÀFIC	GRAPH	FILA
ROW	GRAELLA	GRID	SUCCESSIÓ

Imma Romero IES La Segarra (Cervera)

NuI	mber	ords	Number signs
one	fourteen	ninety	+ add, sum, plus
two	fifteen	hundred	- minus, take-away, subtract
three	sixteen	thousand	x times, multiply, product
four	seventeen	million	\div share, divide, split
five	eighteen	billion	> greater than
six	nineteen		< less than
seven	twenty		- degrees
eight	thirty		\% percentage
nine	forty		$\frac{1}{2}$ fraction
ten	fifty		- decimal point
eleven	sixty		
twelve	seventy		
thirteen	eighty		

At the end of the lesson it could be very useful to do a plenary activity for 10 minutes. Recap key language by asking pupils to make statements about a sequence. For example:

The 3rd term is ...

The rule is ...

The sequence is...

Imma Romero
IES La Segarra (Cervera)

Recurrent Sequences

Lesson 2: Recurrence

- Activity 6
$a n=2 n$
pi decimal places
$a n=n^{2}$
$a n=2 n-1$
$a n=2^{n}$

prime numbers

$1,4,1,5,9,2, \ldots$
$2,4,6,8,10,12, \ldots$
$1,3,5,7,9,11,13, \ldots$
$2,4,8,16,32,64, \ldots$
$1,4,9,16,25,36, \ldots$
$1,2,3,5,7,11,13, \ldots$

- Activity 8

In column A enter numbers from 1 to 3.
Select these first three numbers and drag them downwards.
Go to column B and enter the first few terms of Fibonacci's
sequence. (1 in B2 and 1 again in B3).
In B4 enter the formula = B2+B3 Now press 'enter', and your third term will be calculated.

By dragging the formula from cell B4 downwards you will get other terms in Fibonacci's sequence.

The computer will recognise the pattern and continue with other counting numbers.

At the end of the lesson it could be very useful to do a plenary activity for 10 minutes. Recap key language by asking pupils to make statements about Fibonacci sequence.

Imma Romero

Arithmetic and Geometric Progressions

Lesson 3 : Basics of Arithmetic and Geometric sequences

© The nth term of an AP

An arithmetic sequence is a function whose rule may be expressed as
a linear equation of the form $f(n)=d n+c$ where d is the common differencef(1)
$-c$, and c is a constant.

Experiment 2: breaking The Guinness world Record

In order to solve this problem, students can fill a chart as shown below:

Card castle	3					
Number of floors	1	2	3	4	5	6
Number of cards	2	7	15	26	40	57

Imma Romero
IES La Segarra (Cervera)

In order to find the rule students have to think about triangular numbers, and they can draw a graph like the one below:

They have to notice that it is necessary to subtract the row below of horizontal cards. That is, for n floors the number of cards is:

$$
\text { 3. }\left(\frac{n(n+1)}{2}\right)-n=\frac{n \cdot(3 n+1)}{2}
$$

IES La Segarra (Cervera)

Assessment

Name:
Subject:
Lesson:
Date:

1) Have you learnt anything new?
2) Can you use the things you have learned in your daily life?
3) You are interested in learning more about....
4) What things need to be changed?
5) What do you suggest?

Websites

Pictures, ClipArt,Printable...

http://www.senteacher.org
http://classroomclipart.com/
http://www.gcse.com/maths/mindex.htm
http://www.vincentdutrait.com/dotclear/index.php?p48
http://www.crosswordpuzzlegames.com/create.html

Maths

http://mathforum.org/
http://www.purplemath.com/
http://www.shodor.org/interactivate/
http://www.algebra.com/
http://www.divulgamat.es/
http://demo.activemath.org

Fibonacci

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibInArt.html
http://mathworld.wolfram.com/FibonacciNumber.html
http://www.bbc.co.uk/dna/h2g2/Search?searchtype=article\&showapproved=1\&showsub mitted=1\&shownormal=1\&searchstring=fibonacci\&dosearch. $x=0 \& d o s e a r c h . y=0 \& d o s e$ arch=Search+the+Guide

Zeno's paradox

http://www.mathacademy.com/pr/prime/articles/zeno_tort/

Through the Looking Glass by Lewis Carroll

http://www.cs.indiana.edu/metastuff/looking/ch1.html.gz

