Aim: To make an introduction to Physics, definitions and method.

Teaching objectives	Learning Outcomes At the end of the lesson students should be able
Content To introduce them to the Physics. To differentiate physical and chemical changes. To explain the scientific method. To distinguish different parts of Physics (mechanics, statics, kinematics, dynamics).	Content To know Physics aims. To define physical and chemical changes. To know the steps of the scientific method.
Cognition To describe phenomena. To encourage critical thinking. To relate an image to its description. To provide opportunities to develop a variety of skills.	Cognition To describe and classify phenomena. To compare and synthesise visual and written skills. To work in groups effectively. To problem-solve collaboratively.
Communication To use 'perhaps' or 'maybe' to make hypotheses. To write definitions and conclusions. To explain why changes happen. To use language of cause and effect.	Communication To explain phenomena using scientific vocabulary. To use new vocabulary in context.
Culture To relate physics to life changes. To study daily life changes. To recognise the contribution of scientists in physics.	Culture To identify physical changes in their daily routine. To search for information using different sources. To write biographies. To be aware of the relevance of scientific thinking.

Tasks planned and timing

- <u>Power Point</u> to introduce the subject: what it is about, the explanation of the topics and some examples.
- Students will be provided with a <u>handout</u> with their tasks. There will be some different kinds of exercises: working in pairs, matching pictures with a sentence, filling gaps, plenary to discuss conclusions
- <u>Homework</u>: some exercises of the handout to clarify new concepts or do some research on their own.

Resources

- For the power-point: a computer, a screen and a projector
- For the class activities: a handout for each student with the theoretical basis they are supposed to learn and with the exercises to support them and to enable effective learning.
- For the homework: some exercises of the handout given (biographies and some exercises of physical and chemical changes depending on the time left).

Assessment

• Teacher assesses the work done during the lesson, the homework done at home and the students' attitude towards the content and the use of language.

Aim: To make an introduction to the physical magnitudes.

[
Teaching objectives	Learning Outcomes
I want to teach	At the end of the lesson students should be able
Content	Content
To define motion.	To recognise the need of a reference point.
To introduce them the International System of Units.	To distinguish between position, speed/velocity
To differentiate position from trajectory.	and acceleration.
To distinguish between basic and derived units.	To know the International System of units.
	To convert units.
Cognition	Cognition
To describe images related to motion.	To describe and classify motion.
To encourage critical thinking.	To compare and synthesise visual and written skills.
To relate an image to its description.	To work in groups effectively.
To provide opportunities to develop a variety of skills.	To problem-solve collaboratively.
Communication	Communication
To use 'perhaps' or 'maybe' to make hypotheses.	To explain motion using scientific vocabulary.
To write definitions and conclusions.	To use new vocabulary in contex.
lo explain why motion is relative.	Io solve problems accurately and make
To use language of cause and effect.	themselves understood.
Culture	Culture
To relate physics to life changes.	To understand motion in the Universe.
To study daily life changes.	To be aware of the relevance of scientific thinking.
To recognise non International System Units.	

Tasks planned and timing

- <u>Power Point</u> to introduce the subject: what it is about using some examples.
- Students will be provided with a <u>handout</u> with their tasks. There will be some different kind of exercises: working in pairs, matching pictures with a sentence, filling gaps, plenary to discuss conclusions.
- <u>Homework</u>: some exercises of the handout to clarify new concepts or do some research on their own.
- Experiment: calculate the average speed.

Resources

- For the <u>power-point</u>: a computer, a screen and a projector.
- For the class activities: a <u>handout</u> for each student with the theoretical basis they are supposed to learn, with the exercises to support them and to enable effective learning and an easy experiment.
- For the <u>homework</u>: some exercises of the handout given (some exercises of unit conversion depending on the time left).

Assessment

• Teacher assesses the work done during the lesson, the homework done at home and the students' attitude towards the content and the use of language.

Aim: To describe Motion with words, diagrams, numbers, graphs and equations.

Teaching objectives	Learning Outcomes
I want to teach	At the end of the lesson students should be able
Content	Content
To introduce them to the different linear motions.	To recognise the different types of motion.
To differentiate scalars from vectors.	To define and distinguish between distance and
To distinguish between distance and displacement.	displacement.
To differentiate constant speed from changing	To know the definition of acceleration.
speed.	To distinguish a uniform motion from an
To define acceleration.	accelerated motion.
Cognition	Cognition
To describe motion with words and diagrams.	To classify motion.
To encourage critical thinking.	To compare and synthesise visual and written skills.
To relate an image to its description.	To work in groups effectively.
To provide opportunities to develop a variety of skills.	To problem-solve collaboratively.
Communication To provide scientific vocabulary to describe motion. To write definitions and conclusions. To explain how to calculate speed and acceleration. To interpret data tables and ticker tape diagrams. To provide the general scheme to solve numerical problems.	Communication To use scientific vocabulary to describe motion. To use new vocabulary in context. To explain speed and acceleration calculations. To interpret data tables and ticker tape diagrams.
Culture To study daily life types of motion. To recognise the use of kinematical quantities in life.	Culture To identify kinematical information in their daily routine. To interpret information. To be aware of the relevance of scientific thinking.

Tasks planned and timing

- <u>Power Point</u> to introduce the subject: what the lesson is about and visual support of some worksheets.
- Students will be provided with a <u>handout</u> with their tasks. There will be some different kind of exercises: working in pairs, matching pictures with a sentence, filling gaps, plenary to discuss conclusions.
- <u>Homework</u>: some exercises of the handout to clarify new concepts.

Resources

- For the power-point: a computer, a screen and a projector
- For the class activities: a handout for each student with the theoretical basis they are supposed to learn and with the exercises to support them and to enable effective learning.
- For the homework: some exercises of the handout given (diagrams, data tables and some exercises of speed and acceleration calculation depending on the time left).

Assessment

• Teacher assesses the work done during the lesson, the homework done at home and the students' attitude towards the content and the use of language.

Aim: To describe Motion with graphs and equations.

Teaching objectives	Learning Outcomes
I want to teach	At the end of the lesson students should be able to
Content	Content
To understand the different linear motions.	To recognise the different types of motion.
To differentiate between uniform and uniformly	To define and distinguish between distance and
accelerated motion.	displacement.
To describe motion with graphs and equations.	To distinguish a uniform motion from a uniformly
To introduce free fall movement.	accelerated motion.
Cognition	Cognition
To extract information from graphs.	To classify motion.
To apply formulae to solve problems.	To solve problems through trial and error.
To encourage critical thinking.	To work in groups effectively.
To provide opportunities to develop a variety of skills.	To organize and manipulate data.
Communication	Communication
To extend scientific vocabulary to describe motion.	To use scientific vocabulary to describe motion.
To describe and extract information from graphs.	To use new vocabulary in context.
To interpret data from a problem.	To interpret different graphs.
To provide the general scheme to solve numerical	To explain the procedure of solving problems.
problems.	To express the result of a calculation.
Culture	Culture
To relate the theoretical knowledge to motion to	To interpret information.
their lives.	To develop growing curiosity and interest in the
To recognise the application of speed graphs in life.	motion of objects.

Tasks planned and timing

- <u>Power Point</u> to introduce the subject: what the lesson is about and visual support of some worksheets.
- Students will be provided with a <u>handout</u> with their tasks. There will be some different kind of exercises: working in pairs, matching pictures with a sentence, filling gaps, plenary to discuss conclusions.
- <u>Homework</u>: some exercises of the handout to clarify concepts.

Resources

- For the <u>power-point</u>: a computer, a screen and a projector.
- For the class activities: a <u>handout</u> for each student with the theoretical basis they are supposed to learn, with the exercises to support them and to enable effective learning and a practical experiment.
- For the <u>homework</u>: some exercises of the handout given (diagrams, data tables and some exercises of uniform motion and uniformly accelerated motion depending on the time left).

Assessment

• Teacher assesses the work done during the lesson, the homework done at home, the practical work and the students' attitude towards the content and the use of language.