Título: Solución de Cuadrados Mágicos de Orden Par (4N) Autor: Luis R. Morera González

0. Resumen

En este artículo se muestra un algoritmo para hallar la solución de un cuadrado mágico de orden par "múltiplo de cuatro" (4N).

1. Definición cuadrado mágico

El cuadrado mágico original es una matriz cuadrada $N \times N$ con $N \ge 3$. La solución del cuadrado mágico esta dado por organizar los números del 1 al $N \times N$, que se encuentran en el cuadrado mágico original, de forma tal que tanto las filas, columnas y diagonales sumen el número mágico M(N). Para cualquier cuadrado mágico el número mágico M(N) esta dado por $M(N) = (N^3 + N) / 2$

Para resolver cuadrados mágicos inicialmente tenemos que clasificarlos entre cuadrados mágicos de orden par; 4, 6, 8,... u orden impar; 3, 5, 7,.... Comenzaremos resolviendo cuadrados mágicos de orden par. Los cuadrados mágicos de orden par se clasifican en los de orden N = 4n y los de orden N = 4n + 2 donde n = 1, 2, 3,...

2. Solución de cuadrados mágicos de orden múltiplo de 4 (N=4n)

En esta sección resolveremos cuadrados mágicos de orden $N=4n, n=1, 2, 3, \ldots$. Para resolver estos cuadrados mágicos se utiliza el algoritmo de la **TABLA 1.** Donde el número de vueltas se define V(n)=2(n-1)

Ejemplo 1: Cuadrado Mágico de Orden N = 4n = 4 (n=1). Para este cuadrado mágico el número mágico esta dado por $M(N) = (4^3 + 4)/2 = 34$..

(PASO 1)

Inicialmente escribiendo el número 1 en el extremo superior izquierdo (**S-I**) y desplazándonos de izquierda a derecha (**I-D**) y contando los números 1, 2, 3, ..., 16, llenaremos las celdas correspondientes a las diagonales principales (**DP**), dejando las otras celdas vacías.

1>ini			4
>	6	7	
>	10	11	
13>			16

(Paso 2) El Número de Vueltas esta dado por V(1) = 2(1-1) = 0, esto indica que no tendremos que zizagear.

(FINAL)

Ahora nos situaremos en el extremo inferior derecho (**I-D**) y desplazándonos de derecha a izquierda (**D-I**) y contando los números 1, 2, 3, ..., 16, llenaremos las celdas que faltan (**F**).

1	15	14	<4
12	6	7	<9
8	10	11	<5
13	3	2	<16ini

Note que cada fila, columna y diagonal principal suman 34.

Ejemplo 2: Cuadrado mágico de orden N= $4\times2=8$, n = 2. Para resolver este cuadrado mágico usaremos el algoritmo de la **TABLA 1**. En este cuadrado mágico el número mágico esta dado por M(N) = $(8^3 + 8)/2 = 260$.

(PASO 1)

Comenzaremos escribiendo el número 1 en el extremo superior izquierdo (S-I) y desplazándonos de izquierda a derecha (I-D) y contando los números 1, 2, 3, ..., 64, llenaremos las celdas correspondientes a las diagonales principales (DP), dejando las otras celdas vacías.

1>ini							8
>	10					15	
>		19			22		
>				29			
>			36	37			
>		43			46		
>	50					55	
57>							64

(PASO 2) El Número de Vueltas esta dado por V(2) = 2(2-1) = 2 e indica que tendremos que zigzaguear dos veces "hacer el PASO 2 una vez". Para llenar las diagonales interiores 1 y 2 y las diagonales exteriores 1 y 2 respectivamente.

(PASO 2.1)

Ahora nos situaremos en el extremo inferior derecho (**I-D**) y desplazándonos en zig-zag (**Z-Z**) contaremos los números 1, 2, 3, ..., 64 y llenaremos la diagonal interior 1 (**Di 1**) y la diagonal exterior 1 (**De 1**).

1>	58					63	8
	10	54			51	15	<
>		19	44	45	22		
40			28	29			<33
25>			36	37			32
		43	21	20	46		<
>	50	11			14	55	
57	7					2	<64ini

(PASO 2.2)

Ahora nos situaremos en el extremo superior derecho (**S-D**) y desplazándonos en zig-zag (**Z-Z**) contaremos los números 1, 2, 3, ..., 64 y llenaremos la diagonal interior 2 (**Di 2**) y la diagonal exterior 2 (**De 2**).

1	58	6			3	63	<8ini
>	10	54	12	13	51	15	
24		19	44	45	22		<17
40>	26		28	29		31	33
25	39		36	37		34	<32
41>		43	21	20	46		48
	50	11	53	52	14	55	\
57>	7	59			62	2	64

Como se han dado 2 vueltas en zig-zag terminamos el PASO 2.

(FINAL)

Ahora nos situaremos en el extremo inferior derecho (**I-D**) y desplazándonos de derecha a izquierda (**D-I**) contaremos los números 1, 2, 3, ..., 64 y llenaremos las celdas que faltan (**F**).

1	58	6	61	60	3	63	<8
56	10	54	12	13	51	15	<49
24	47	19	44	45	22	42	<17
40	26	38	28	29	35	31	<33
25	39	30	36	37	27	34	<32
41	23	43	21	20	46	18	<48
16	50	11	53	52	14	55	<9
57	7	59	5	4	62	2	<64 ini

Note que la suma de las filas, columnas y diagonales principales es 260.

Ejemplo 3: Cuadrado Mágico de orden $N = 4 \times 3 = 12$, n = 3, para esto usaremos el algoritmo de la **TABLA 1**. En este cuadrado mágico el número mágico esta dado por $M(N) = (12^3 + 12)/2 = 870$.

(PASO 1)

Comenzaremos escribiendo el número 1 en el extremo superior izquierdo (**S-I**) y desplazándonos de izquierda a derecha (**I-D**) y contando los números 1, 2, 3, ...,144, llenaremos las celdas correspondientes a las diagonales principales (**DP**), dejando las otras celdas vacías.

1>ini											12
>	14									23	
>		27							34		
>			40					45			
>				53			56				
>					66	67					
>					78	79					
>				89			92				
>			100					105			
>		111							118		
>	122									131	
133>											144

(PASO 2) El Número de Vueltas esta dado por V(3) = 2(3-1) = 4 e indica que tendremos que zigzaguear cuatro veces esto es repetir el **PASO 2** en dos ocasiones. Para llenar las diagonales interiores 1, 2, 3 y 4 y las diagonales exteriores 1, 2, 3 y 4 respectivamente.

(PASO 2.1)

Ahora nos situaremos en el extremo inferior derecho (**I-D**) y desplazándonos en zig-zag (**Z-Z**) contaremos los números 1, 2, 3, ..., 144 y llenaremos la diagonal interior 1 (**Di 1**) y la diagonal exterior 1 (**De 1**).

1>	134									143	12
	14	130							123	23	<
>		27	112					117	34		
			40	104			101	45			<
>				53	90	91	56				
84					66	67					<73
61>					78	79					72
				89	55	54	92				<
>			100	41			44	105			
		111	33					28	118		<
>	122	15							22	131	
133	11									2	<144ini

(PASO 2.2)

Ahora nos situaremos en el extremo superior derecho (**S-D**) y desplazándonos en zig-zag (**Z-Z**) contaremos los números 1, 2, 3, ..., 144 y llenaremos la diagonal interior 2 (**Di 2**) y la diagonal exterior 2 (**De 2**).

1	134	10							3	143	<12ini
>	14	130	16					21	123	23	
		27	112	32			29	117	34		<
>			40	104	42	43	101	45			
60				53	90	91	56				<49
84>	62				66	67				71	73
61	83				78	79				74	<72
85>				89	55	54	92				96
			100	41	103	102	44	105			<
>		111	33	113			116	28	118	·	
	122	15	129					124	22	131	<
133>	11	135							142	2	144

Repetir el **PASO 2** para llenar las diagonales interiores 3 y 4 y las diagonales exteriores 3 y 4 respectivamente.

Luego de estos dos pasos tenemos:

1	134	10	136	8			5	141	3	143	12
	14	130	16	128	18	19	125	21	123	23	
36		27	112	32	114	115	29	117	34		25
108	38		40	104	42	43	101	45		47	97
60	86	58		53	90	91	56		51	95	49
84	62	82	64		66	67		69	75	71	73
61	83	63	81		78	79		76	70	74	72
85	59	87		89	55	54	92		94	50	96
37	107		100	41	103	102	44	105		98	48
109		111	33	113	31	30	116	28	118		120
	122	15	129	17	127	126	20	124	22	131	
133>	11	135	9	137			140	4	142	2	144

(FINAL)

Ahora nos situaremos en el extremo inferior derecho (**I-D**) y desplazándonos de derecha a izquierda (**D-I**) contaremos los números 1, 2, 3,..., 144 y llenaremos las celdas que faltan por llenar (**F**).

1	134	10	136	8	138	139	5	141	3	143	<12
132	14	130	16	128	18	19	125	21	123	23	<121
36	119	27	112	32	114	115	29	117	34	110	<25
108	38	106	40	104	42	43	101	45	99	47	<97
60	86	58	93	53	90	91	56	88	51	95	<49
84	62	82	64	80	66	67	77	69	75	71	<73
61	83	63	81	68	78	79	65	76	70	74	<72
85	59	87	57	89	55	54	92	52	94	50	<96
37	107	46	100	41	103	102	44	105	39	98	<48
109	35	111	33	113	31	30	116	28	118	26	<120
24	122	15	129	17	127	126	20	124	22	131	<13
133	11	135	9	137	7	6	140	4	142	2	<144ini

Note que la suma de las filas, columnas y diagonales principales es 870 Luego de entender los ejemplos anteriores usted esta capacitado para resolver cualquier cuadrado mágico de orden $\mathbf{N} = \mathbf{4n}$ donde $\mathbf{n} = 1, 2, 3, \dots$ Veamos la solución de un cuadrado mágico de orden 16.

Ejemplo 4. Cuadrado Mágico de orden N = $4 \times 4 = 16$, n=4. En este cuadrado mágico el número mágico esta dado por M(N) = $(16^3 + 16)/2 = 2,056$. Además el Número de Vueltas esta dado por V(4) = 2(4 - 1) = 6 Esto implica que tendremos que zigzaguear seis veces esto es repetir el **PASO 2** en tres ocasiones. Para llenar las diagonales interiores 1, 2, 3, 4, 5 y 6 y las diagonales exteriores 1, 2, 3, 4, 5 y 6 respectivamente.

1	242	14	253	12	246	10	249	248	7	251	5	244	3	255	16
240	18	238	20	229	22	234	24	25	231	27	236	29	227	31	225
48	223	35	212	44	219	42	216	217	39	214	37	221	46	210	33
208	50	206	52	204	54	202	56	57	199	59	197	61	195	63	193
80	178	78	189	69	182	74	184	185	71	187	76	180	67	191	65
176	82	174	84	172	86	170	88	89	167	91	165	93	163	95	161
112	146	110	148	108	155	103	152	153	106	150	101	157	99	159	97
144	114	142	116	140	118	138	120	121	135	123	133	125	131	127	129
113	143	115	141	117	139	122	136	137	119	134	124	132	126	130	128
145	111	147	109	149	107	151	105	104	154	102	156	100	158	98	160
81	175	83	173	92	166	87	169	168	90	171	85	164	94	162	96
177	79	179	77	181	75	183	73	72	186	70	188	68	190	66	192
49	207	62	196	53	203	55	201	200	58	198	60	205	51	194	64
209	47	211	45	213	43	215	41	40	218	38	220	36	222	34	224
32	226	19	237	21	235	23	233	232	26	230	28	228	30	239	17
241	15	243	13	245	11	247	9	8	250	6	252	4	254	2	256

Note que la suma de cada fila, columna y diagonales principales es 2056.

TABLA 1 ORDEN

 $N = 4N, N \ge 1$

S-I	
	I-D

	PASO 1	PASO 2		FINAL
		Número de Vueltas		
		V(n)=2(n-1)		
INICIO	S-I	I-D	S-D	I-D
		2.1	2.2	
MOVIMIENTO	I-D	Z-Z	Z-Z	D-I
	ini \rightarrow	\leftarrow	← ini	\leftarrow
	\rightarrow	\rightarrow	\rightarrow	←ini
		←ini	\leftarrow	
ACCION	LLENAR	LLENAR	LLENAR	LLENAR
	DP	DI 1+DE	DI 2+DE	NUMEROS
		1	2	F

El número de vueltas V(n) es el número veces que hay que zigzaguear. El PASO 2 se repite 2(n-1) veces, para llenar las diagonales interiores y exteriores que falten.