

The Object Data Standard:
ODMG 3.0

Edited by
R.G.G. Cattell

Douglas K. Barry

Contributors

Mark Berler
Jeff Eastman
David Jordan
Craig Russell
Olaf Schadow

Torsten Stanienda
Fernando Velez

Morgan Kaufmann Publishers
San Francisco, California

Contents
Preface vii

CHAPTERS

1 Overview 1
1.1 Background 1
1.2 Major Components 2
1.3 Participants 3
1.4 History and Status 4

2 Object Model 9
2.1 Introduction 9
2.2 Types: Specifications and Implementations 10
2.3 Objects 15
2.4 Literals 31
2.5 The Full Built-in Type Hierarchy 35
2.6 Modeling State—Properties 37
2.7 Modeling Behavior—Operations 41
2.8 Metadata 42
2.9 Locking and Concurrency Control 53
2.10 Transaction Model 54
2.11 Database Operations 58

3 Object Specification Languages 61
3.1 Introduction 61
3.2 Object Definition Language 61
3.3 Object Interchange Format 78

4 Object Query Language 89
4.1 Introduction 89
4.2 Principles 89
4.3 Query Input and Result 90
4.4 Dealing with Object Identity 91
4.5 Path Expressions 92
4.6 Undefined Values 95
4.7 Method Invoking 96
4.8 Polymorphism 97
4.9 Operator Composition 98
4.10 Language Definition 99
4.11 Syntactical Abbreviations 124
4.12 OQL Syntax 126

vi ODMG Contents
5 C++ Binding 133
5.1 Introduction 133
5.2 C++ ODL 139
5.3 C++ OML 151
5.4 C++ OQL 187
5.5 Schema Access 190
5.6 Example 206

6 Smalltalk Binding 213
6.1 Introduction 213
6.2 Smalltalk ODL 216
6.3 Smalltalk OML 226
6.4 Smalltalk OQL 231
6.5 Schema Access 232

7 Java Binding 239
7.1 Introduction 239
7.2 Java ODL 245
7.3 Java OML 247
7.4 Java OQL 256
7.5 Property File 258

APPENDICES

A Comparison with the OMG Object Model 263
A.1 Introduction 263
A.2 Purpose 263
A.3 Components and Profiles 264
A.4 Type Hierarchy 266
A.5 The ORB Profile 266
A.6 Other Standards Groups 267

Biographies 269

INDEX 273

Preface
This book defines the ODMG standard, which is implemented by object database
management systems and object-relational mappings. The book should be useful to
engineers, managers, and students interested in these systems. Although product docu-
mentation from ODMG member companies covers similar information, this book
represents the definitive reference for writing code that will work with multiple prod-
ucts. The book has also proven useful in courses concerning object data management
and persistence of programming language objects.

This book is the fifth in a series of ODMG standard specifications that began with
ODMG 1.0 in 1993. This Release 3.0 differs from the previous specifications in a
number of ways. It includes a number of enhancements to the Java binding, now
implemented by half a dozen products. It incorporates improvements to the object
model. It incorporates various corrections and enhancements in all of the chapters,
including changes necessary to broaden the standard for use by object-relational
mapping systems as well as for the original target of the standard, object DBMSs.

Since the ODMG standard has now reached some level of maturity, the focus of the
ODMG organization has shifted to implementation, refinement, and promulgation of
the standard in the industry. ODMG members worked in recent years to ensure that
OMG standards would be compatible with ODMG products. ODMG has granted
rights to Chapter 7 for use in the Java Community Process, working toward a broader
standard for persistent data objects in Java.

Given this level of maturity and stability, we do not expect to publish a new release of
the ODMG specification soon. For revised chapters and new information subsequent
to publication of this book, please refer to the contact information at the end of Chapter
1; in particular, the Web site www.odmg.org should contain the latest updates.

There is an ODMG working group for each chapter of this book. The contributors
listed on the cover of this book are the elected chairs and editors for those working
groups. Work on standards is not always recognized as important to companies whose
livelihood depends on next quarter's revenue, so these authors are to be commended on
their personal dedication and cooperation in improving the usability and consistency
of their technology. In addition, other people have made important contributions to the
ODMG working groups and to previous releases of this standard. These people are
acknowledged in Chapter 1.

Rick Cattell, September 1999

 Chapter 1

Overview
1.1 Background
This document describes the continuing work by members of the Object Data Manage-
ment Group (ODMG) on specifications for persistence of object-oriented program-
ming language objects in databases. The specification applies to two types of products:
Object Database Management Systems (ODBMSs) that store objects directly and
Object-to-Database Mappings (ODMs) that convert and store the objects in a relational
or other database system representation. The two types of products will be referred to
as object data management systems or ODMSs.

This document describes Release 3.0 of the ODMG specification, commonly known
as ODMG 3.0, and is an enhancement to ODMG 2.0.

1.1.1 Importance of a Standard
Before the ODMG specification, the lack of a standard for storing objects in databases
was a major limitation to object application portability across database systems.
ODMG enables many vendors to support and endorse a common object interface to
which customers write their database applications.

1.1.2 Goals
Our primary goal is to put forward a set of specifications allowing a developer to write
portable applications, that is, applications that could run on more than one product. The
data schema, programming language binding, and data manipulation and query
languages must be portable. We are striving to bring programming languages and data-
base systems to a new level of integration, moving the industry forward as a whole
through the practical impetus of real products that conform to a comprehensive speci-
fication.

The ODMG member companies, representing almost the entire ODMS industry, are
supporting this specification. Thus, our proposal has become a de facto standard for
this industry. We have also used our specification in our work with standards efforts
such as the Java Community Process, OMG, and the INCITS X3H2 (SQL) committee.

We do not wish to produce identical products. Our goal is source code portability; there
is a lot of room for future innovation in a number of areas. There will be differences
between products in performance, languages supported, functionality unique to partic-
ular market segments (e.g., version and configuration management), accompanying

2 ODMG Overview
programming environments, application construction tools, small versus large scale,
multithreading, networking, platform availability, depth of functionality, suites of
predefined type libraries, GUI builders, design tools, administration tools, and so on.

Wherever possible, we have used existing work as the basis for our proposals, from
standards groups and from the literature. But, primarily, our work is derived by
combining the strongest features of the products currently available. These products
offer demonstrated implementations of our specifications that have been tried in the
field.

1.1.3 Definition
It is important to define the scope of our efforts. An ODMS transparently integrates
database capability with the application programming language. We define an
ODBMS to be a DBMS that integrates database capabilities with object-oriented
programming language capabilities. We define an ODM to be a system that integrates
relational or other nonobject DBMSs with object-oriented programming language
capabilities. ODMs include object-relational mapping products and object application
servers. Either type of ODMS (ODBMS or ODM) makes database objects appear as
programming language objects, in one or more existing programming languages.
ODMSs extend the programming language with transparently persistent data, concur-
rency control, data recovery, associative queries, and other database capabilities. For
more extensive definition and discussion of ODBMSs and ODMs, we refer you to text-
books in this area.

1.2 Major Components
The major components of ODMG 3.0 are described in subsequent chapters:

Object Model. The common data model to be supported by ODMG imple-
mentations is described in Chapter 2. We have used the OMG Object Model
as the basis for our model. The OMG core model was designed to be a com-
mon denominator for object request brokers, object database systems, object
programming languages, and other applications. In keeping with the OMG
Architecture, we have designed an ODMS profile for their model, adding
components (e.g., relationships) to the OMG core object model to support our
needs.

Object Specification Languages. The specification languages for ODMSs are
described in Chapter 3. The two described in this chapter are the Object Def-
inition Language (ODL) and Object Interchange Format (OIF) languages.
ODL is a specification language used to define the object types that conform
to the ODMG Object Model. OIF is a specification language used to dump
and load the current state of an ODMS to or from a file or set of files.

1.3 Participants 3
Object Query Language. We define a declarative (nonprocedural) language
for querying and updating ODMS objects. This object query language, or
OQL, is described in Chapter 4. We have used the relational standard SQL as
the basis for OQL, where possible, though OQL supports more powerful
capabilities.

C++ Language Binding. Chapter 5 presents the binding of ODMG imple-
mentations to C++; it explains how to write portable C++ code that manipu-
lates persistent objects. This is called the C++ OML, or object manipulation
language. The C++ binding also includes a version of the ODL that uses C++
syntax, a mechanism to invoke OQL, and procedures for operations on
ODMSs and transactions.

Smalltalk Language Binding. Chapter 6 presents the binding of ODMG im-
plementations to Smalltalk; it defines the binding in terms of the mapping be-
tween ODL and Smalltalk, which is based on the OMG Smalltalk binding for
IDL. The Smalltalk binding also includes a mechanism to invoke OQL and
procedures for operations on databases and transactions.

Java Language Binding. Chapter 7 defines the binding between the ODMG
Object Model (ODL and OML) and the Java programming language as de-
fined by the Java™ 2 Platform. The Java language binding also includes a
mechanism to invoke OQL and procedures for operations on ODMSs and
transactions. This chapter has been submitted to the Java Community Process
as a basis for the Java Data Objects Specification.

It is possible to read and write the same database from C++, Smalltalk, and Java, as
long as the programmer stays within the common subset of supported datatypes. More
chapters may be added at a future date for other language bindings. Note that unlike
SQL in relational systems, the ODMG data manipulation languages are tailored to
specific application programming languages, in order to provide a single, integrated
environment for programming and data manipulation. We don’t believe exclusively in
a universal DML syntax. We go further than relational systems, as we support a unified
object model for sharing data across programming languages, as well as a common
query language.

1.3 Participants
As of September 1999, the participants in the ODMG are

• Rick Cattell (ODMG chair, Release 1.0 editor), Sun Microsystems
• Jeff Eastman (ODMG vice-chair, Object Model workgroup chair,

Smalltalk editor), Robert Hirschfeld, Windward Solutions
• Douglas Barry (ODMG executive director, Release 1.1, 1.2, 2.0, and

3.0 editor), Barry & Associates

4 ODMG Overview
• Mark Berler (Object Model and Object Specification Languages editor),
American Management Systems

• Suad Alagic (invited staff), Wichita State University
• Jack Greenfield (invited staff), InLine Software
• François Bancilhon, Fernando Velez (OQL editor), voting member, Ardent

Software
• Dirk Bartels, Olaf Schadow (C++ workgroup chair), voting member,

POET Software
• David Jordan (C++ and Java editor), voting member, Ericsson
• Henry Parnell, voting member, Object Design
• Ron Raffensperger, voting member, Objectivity
• Craig Russell (Java workgroup chair), voting member, Sun Microsystems
• Henry Strickland, voting member, Versant Corporation
• Zaid Al-Timimi, reviewer member, Advanced Language Technologies
• Lougie Anderson, reviewer member, GemStone Systems
• Ole Anfindsen, reviewer member, Telenor R&D
• Tony Kamarainen, reviewer member, Lawson Software
• Yutaka Kimura, reviewer member, NEC
• Paul Lipton, reviewer member, Computer Associates
• Jon Reid, reviewer member, Micro Data Base Systems
• Jamie Shiers, reviewer member, CERN
• Torsten Stanienda (OQL workgroup chair), reviewer member, Baan
• Satoshi Wakayama, reviewer member, Hitachi

It is to the personal credit of all participants that the ODMG standard has been
produced and revised expeditiously. All of the contributors put substantial time and
personal investment into the meetings and this document. They showed remarkable
dedication to our goals; no one attempted to twist the process to his or her company's
advantage.

1.4 History and Status
Some of the history and methodology of ODMG may be helpful in understanding our
work and the philosophy behind it. We learned a lot about how to make quick progress
in standards in a new industry while avoiding “design by committee.”

ODMG was conceived at the invitation of Rick Cattell in the summer of 1991, in an
impromptu breakfast with ODBMS vendors frustrated at the lack of progress toward
ODBMS standards. Our first meeting was at Sun Microsystems in the fall of 1991.

1.4 History and Status 5
The group adopted rules that have been instrumental to our quick progress. We wanted
to remain small and focused in our work, yet be open to all parties who are interested
in our work. The structure evolved over time. Presently, we have established work-
groups, one for each chapter of the specification. Each workgroup is intended to
remain small, allowing for good discussion. The specifications adopted in each work-
group, however, must go before the ODMG Board for final approval. The Board
usually holds open meetings for representatives from all members to attend and
comment on our work.

We have worked outside of traditional standards bodies in order to make quick
progress. Standards groups are well suited to incremental changes to a proposal once
a good starting point has been established, but it is difficult to perform substantial
creative work in such organizations due to their lack of continuity, large membership,
and infrequent meetings. For our work, we have picked and combined the best features
of implementations we had available to us.

The people who come to our meetings from our member companies are called Tech-
nical Representatives. They are required to have a technical background in our
industry. We also have established rules requiring the same Technical Representatives
come repeatedly to our meetings to maintain continuity of our work.

Voting membership is open to organizations that utilize or have announced utilization
of the ODMG specification. Reviewer members are individuals or organizations
having a direct and material interest in the work of the ODMG.

1.4.1 Accomplishments
Since the publication of Release 1.0, a number of activities have occurred.

1. Incorporation of the ODMG and the establishment of an office.
2. Affiliation with the Object Management Group (OMG), OMG adoption

(February 1994) of a Persistence Service endorsing ODMG-93 as a standard
interface for storing persistent state, and OMG adoption (May 1995) of a
Query Service endorsing the ODMG OQL for querying OMG objects.

3. Establishment of liaisons with INCITS X3H2 (SQL), X3J16 (C++), and
X3J20 (Smalltalk), and ongoing work between ODMG and X3H2 for
converging OQL and SQL3 (now known as SQL-99).

4. Addition of reviewer membership to allow the user community to participate
more fully in the efforts of the ODMG.

5. Publication of articles written by ODMG participants that explain the goals
of the ODMG and how they will affect the industry.

6. Collection of feedback on Release 1.0, 1.1, 1.2, and 2.0, of which much was
used in this release.

6 ODMG Overview
7. Co-submission of an OMG Persistent State Service with IONA, Inprise, and
others, which incorporates an ODMG transparent persistence option. This
submission was accepted by the OMG’s Platform Technology Committee in
November, 1999.

8. Submittal of the ODMG Java Binding to the Java Community Process as a
basis for the Java Data Objects Specification.

1.4.2 Next Steps
We now plan to proceed with several actions in parallel to keep things moving quickly.

1. Distribute Release 3.0 through this book.
2. Complete implementation of the specifications in our respective products.
3. Collect feedback and corrections for the next release of our standards

specification.
4. Continue to maintain and develop our work.
5. Continue to submit our work to the Java Community Process, OMG, or

INCITS, as appropriate.

1.4.3 Suggestion and Proposal Process
If you have suggestions for improvements in future versions of our document, we
welcome your input. We recommend that change proposals be submitted as follows:

1. State the essence of your proposal.
2. Outline the motivation and any pros/cons for the change.
3. State exactly what edits should be made to the text, referring to page

number, section number, and paragraph.
4. Send your proposal to proposal@odmg.org.

1.4.4 Contact Information
If you have questions on ODMG 3.0, send them to question@odmg.org.

If you have additional questions, or if you want membership information for the
ODMG, please contact ODMG’s executive director, Douglas Barry, at
dbarry@odmg.org, or contact

Object Data Management Group
13504 4th Avenue South
Burnsville, MN 55337 USA
Voice:+1-612-953-7250
Fax: +1-612-397-7146
Email:info@odmg.org
Web: www.odmg.org

1.4 History and Status 7
1.4.5 Related Standards
There are references in this book to INCITS X3 documents, including SQL specifica-
tions (X3H2), Object Information Management (X3H7), the X3/SPARC/DBSSG
OODB Task Group Report (contact fong@ecs.ncsl.nist.gov), and the C++ standard
(X3J16). INCITS documents can be obtained from

X3 Secretariat, CBEMA
1250 Eye Street, NW, Suite 200
Washington, DC 20005-3922 USA

There are also references to Object Management Group (OMG) specifications, from
the Object Request Broker (ORB) Task Force (also called CORBA), the Object Model
Task Force (OMTF), and the Object Services Task Force (OSTF). OMG can be
contacted at

Object Management Group
Framingham Corporate Center
492 Old Connecticut Path
Framingham, MA 01701 USA
Voice:+1-508-820-4300
Fax: +1-508-820-4303
Email: omg@omg.org
Web: www.omg.org

The Java Community Process is the formalization of the open process that Sun Micro-
systems, Inc. has been using since 1995 to develop and revise Java technology speci-
fications in cooperation with the international Java community. The Java Community
Process can be found at

Web: java.sun.com/aboutJava/communityprocess/

8 ODMG Overview

 Chapter 2

Object Model
2.1 Introduction
This chapter defines the Object Model supported by ODMG-compliant object data
management systems (ODMSs). The Object Model is important because it specifies
the kinds of semantics that can be defined explicitly to an ODMS. Among other things,
the semantics of the Object Model determine the characteristics of objects, how objects
can be related to each other, and how objects can be named and identified.

Chapter 3 defines programming language–independent object specification languages.
One such specification language, Object Definition Language (ODL), is used to
specify application object models and is presented for all of the constructs explained
in this chapter for the Object Model. It is also used in this chapter to define the opera-
tions on the various objects of the Object Model. Chapters 5, 6, and 7, respectively,
define the C++, Smalltalk, and Java programming language bindings for ODL and for
manipulating objects. Programming languages have some inherent semantic differ-
ences; these are reflected in the ODL bindings. Thus, some of the constructs that
appear here as part of the Object Model may be modified slightly by the binding to a
particular programming language. Modifications are explained in Chapters 5, 6, and 7.

The Object Model specifies the constructs that are supported by an ODMS:

• The basic modeling primitives are the object and the literal. Each object has
a unique identifier. A literal has no identifier.

• Objects and literals can be categorized by their types. All elements of a given
type have a common range of states (i.e., the same set of properties) and
common behavior (i.e., the same set of defined operations). An object is
sometimes referred to as an instance of its type.

• The state of an object is defined by the values it carries for a set of proper-
ties. These properties can be attributes of the object itself or relationships
between the object and one or more other objects. Typically, the values of an
object’s properties can change over time.

• The behavior of an object is defined by the set of operations that can be exe-
cuted on or by the object. Operations may have a list of input and output
parameters, each with a specified type. Each operation may also return a
typed result.

• An ODMS stores objects, enabling them to be shared by multiple users and
applications. An ODMS is based on a schema that is defined in ODL and
contains instances of the types defined by its schema.

2 ODMG Object Model
The ODMG Object Model specifies what is meant by objects, literals, types, opera-
tions, properties, attributes, relationships, and so forth. An application developer uses
the constructs of the ODMG Object Model to construct the object model for the appli-
cation. The application’s object model specifies particular types, such as Document,
Author, Publisher, and Chapter, and the operations and properties of each of these types.
The application’s object model is the ODMS’s (logical) schema. The ODMG Object
Model is the fundamental definition of an ODMS’s functionality. It includes signifi-
cantly richer semantics than does the relational model, by declaring relationships and
operations explicitly.

2.2 Types: Specifications and Implementations
There are two aspects to the definition of a type. A type has an external specification
and one or more implementations. The specification defines the external characteris-
tics of the type. These are the aspects that are visible to users of the type: the operations
that can be invoked on its instances, the properties, or state variables, whose values can
be accessed, and any exceptions that can be raised by its operations. By contrast, a
type’s implementation defines the internal aspects of the objects of the type: the imple-
mentation of the type’s operations and other internal details. The implementation of a
type is determined by a language binding.

An external specification of a type consists of an implementation-independent,
abstract description of the operations, exceptions, and properties that are visible to
users of the type. An interface definition is a specification that defines only the abstract
behavior of an object type. A class definition is a specification that defines the abstract
behavior and abstract state of an object type. A class is an extended interface with
information for ODMS schema definition. A literal definition defines only the abstract
state of a literal type. Type specifications are illustrated in Figure 2-1.

Figure 2-1. Type Specifications

Abstract behavior Abstract state

Interface Class Literal

 (properties) (operations)

2.2 Types: Specifications and Implementations 3
For example, interface Employee defines only the abstract behavior of Employee objects.
Class Person defines both the abstract behavior and the abstract state of Person objects.
Finally, the struct Complex defines only the abstract state of Complex number literals.
In addition to the struct definition and the primitive literal datatypes (boolean, char, short,
long, float, double, octet, and string), ODL defines declarations for user-defined collec-
tion, union, and enumeration literal types.

interface Employee {...};
class Person {...};
struct Complex {float re; float im; };

An implementation of an object type consists of a representation and a set of methods.
The representation is a data structure that is derived from the type’s abstract state by a
language binding: For each property contained in the abstract state there is an instance
variable of an appropriate type defined. The methods are procedure bodies that are
derived from the type’s abstract behavior by the language binding: For each of the
operations defined in the type’s abstract behavior a method is defined. This method
implements the externally visible behavior of an object type. A method might read or
modify the representation of an object’s state or invoke operations defined on other
objects. There can also be methods in an implementation that have no direct counter-
part to the operations in the type’s specification. The internals of an implementation
are not visible to the users of the objects.

Each language binding also defines an implementation mapping for literal types. Some
languages have constructs that can be used to represent literals directly. For example,
C++ has a structure definition that can be used to represent the above Complex literal
directly using language features. Other languages, notably Smalltalk and Java, have no
direct language mechanisms to represent structured literals. These language bindings
map each literal type into constructs that can be directly supported using object classes.
Further, since both C++ and Java have language mechanisms for directly handling
floating-point datatypes, these languages would bind the float elements of Complex
literals accordingly. Finally, Smalltalk binds these fields to instances of the class Float.
As there is no way to specify the abstract behavior of literal types, programmers in
each language will use different operators to access these values.

The distinction between specification and implementation views is important. The
separation between these two is the way that the Object Model reflects encapsulation.
The ODL of Chapter 3 is used to specify the external specifications of types in appli-
cation object models. The language bindings of Chapters 5, 6, and 7, respectively,
define the C++, Smalltalk, and Java constructs used to specify the implementations of
these specifications.

A type can have more than one implementation, although only one implementation is
usually used in any particular program. For example, a type could have one C++

4 ODMG Object Model
implementation and another Smalltalk implementation. Or a type could have one C++
implementation for one machine architecture and another C++ implementation for a
different machine architecture. Separating the specifications from the implementations
keeps the semantics of the type from becoming tangled with representation details.
Separating the specifications from the implementations is a positive step toward
multilingual access to objects of a single type and sharing of objects across
heterogeneous computing environments.

Many object-oriented programming languages, including C++, Java, and Smalltalk,
have language constructs called classes. These are implementation classes and are not
to be confused with the abstract classes defined in the Object Model. Each language
binding defines a mapping between abstract classes and its language’s implementation
classes.

2.2.1 Subtyping and Inheritance of Behavior
Like many object models, the ODMG Object Model includes inheritance-based
type-subtype relationships. These relationships are commonly represented in graphs;
each node is a type and each arc connects one type, called the supertype, and another
type, called the subtype. The type-subtype relationship is sometimes called an is-a rela-
tionship, or simply an ISA relationship. It is also sometimes called a generalization-
specialization relationship. The supertype is the more general type; the subtype is the
more specialized.

interface Employee {...};
interface Professor : Employee {...};
interface Associate_Professor : Professor {...};

For example, Associate_Professor is a subtype of Professor; Professor is a subtype of
Employee. An instance of the subtype is also logically an instance of the supertype.
Thus, an Associate_Professor instance is also logically a Professor instance. That is,
Associate_Professor is a special case of Professor.

An object’s most specific type is the type that describes all the behavior and properties
of the instance. For example, the most specific type for an Associate_Professor object is
the Associate_Professor interface; that object also carries type information from the
Professor and Employee interfaces. An Associate_Professor instance conforms to all the
behaviors defined in the Associate_Professor interface, the Professor interface, and any
supertypes of the Professor interface (and their supertypes, etc.). Where an object of
type Professor can be used, an object of type Associate_Professor can be used instead,
because Associate_Professor inherits from Professor.

A subtype’s interface may define characteristics in addition to those defined on its
supertypes. These new aspects of state or behavior apply only to instances of the
subtype (and any of its subtypes). A subtype’s interface also can be refined to

2.2 Types: Specifications and Implementations 5
specialize state and behavior. For example, the Employee type might have an operation
for calculate_ paycheck. The Salaried_Employee and Hourly_Employee class implementa-
tions might each refine that behavior to reflect their specialized needs. The polymor-
phic nature of object programming would then enable the appropriate behavior to be
invoked at runtime, dependent on the actual type of the instance.

class Salaried_Employee : Employee {...};
class Hourly_Employee : Employee {...};

The ODMG Object Model supports multiple inheritance of object behavior. Therefore,
it is possible that a type could inherit operations that have the same name, but different
parameters, from two different interfaces. The model precludes this possibility by
disallowing name overloading during inheritance.

ODL classes are mapped by a language binding to classes of a programming language
that are directly instantiable. Interfaces are types that cannot be directly instantiated.
For example, instances of the classes Salaried_Employee and Hourly_Employee may be
created, but instances of their supertype interface Employee cannot. Subtyping pertains
to the inheritance of behavior only; thus, interfaces may inherit from other interfaces
and classes may also inherit from interfaces. Due to the inefficiencies and ambiguities
of multiple inheritance of state, however, interfaces may not inherit from classes, nor
may classes inherit from other classes. These relationships are illustrated in Figure 2-2.

2.2.2 Inheritance of State
In addition to the ISA relationship that defines the inheritance of behavior between
object types, the ODMG Object Model defines an EXTENDS relationship for the
inheritance of state and behavior. The EXTENDS relationship also applies only to
object types; thus, only classes and not literals may inherit state. The EXTENDS
relationship is a single inheritance relationship between two classes whereby the
subordinate class inherits all of the properties and all of the behavior of the class that
it extends.

ODL interface

ODL class

inherits [0..n]

inherits [0..n]

extends [0..1]

Figure 2-2. Class-Interface Relationships

6 ODMG Object Model
class Person {
attribute string name;
attribute Date birthDate;
};

// in the following, the colon denotes the ISA relationship
// the extends denotes the EXTENDS relationship
class EmployeePerson extends Person : Employee {

attribute Date hireDate;
attribute Currency payRate;
relationship Manager boss inverse Manager::subordinates;
};

class ManagerPerson extends EmployeePerson : Manager {
relationship set<Employee> subordinates

inverse Employee::boss;
};

The EXTENDS relationship is transitive; thus, in the example, every ManagerPerson
would have a name, a birthDate, a hireDate, a payRate, and a boss. Note also that, since
class EmployeePerson inherits behavior from (ISA) Employee, instances of
EmployeePerson and ManagerPerson would all support the behavior defined within this
interface.

The only legal exception to the name-overloading prohibition occurs when the same
property declaration occurs in a class and in one of its inherited interfaces. Since the
properties declared within an interface also have a procedural interface, such
redundant declarations are useful in situations where it is desirable to allow
relationships to cross distribution boundaries, yet they also constitute part of the
abstract state of the object (see Section 2.6 on page 37 for information about the
properties and behavior that can be defined for atomic objects). In the previous
example, it would be permissible (and actually necessary) for the interfaces Employee
and Manager to contain copies of the boss/subordinates relationship declarations,
respectively. It would also be permissible for the interface Employee to contain the
hireDate and/or payRate attributes if distributed access to these state variables was
desired.

2.2.3 Extents
The extent of a type is the set of all instances of the type within a particular ODMS. If
an object is an instance of type A, then it will of necessity be a member of the extent
of A. If type A is a subtype of type B, then the extent of A is a subset of the extent of B.

A relational DBMS maintains an extent for every defined table. By contrast, the
ODMS schema designer can decide whether the system should automatically maintain
the extent of each type. Extent maintenance includes inserting newly created instances

2.3 Objects 7
in the set and removing instances from the set as they are deleted. It may also mean
creating and managing indexes to speed access to particular instances in the extent.
Index maintenance can introduce significant overhead, so the object schema designer
specifies that the extent should be indexed separately from specifying that the extent
should be maintained by the ODMS.

2.2.4 Keys
In some cases, the individual instances of a type can be uniquely identified by the
values they carry for some property or set of properties. These identifying properties
are called keys. In the relational model, these properties (actually, just attributes in rela-
tional databases) are called candidate keys. A simple key consists of a single property.
A compound key consists of a set of properties. The scope of uniqueness is the extent
of the type; thus, a type must have an extent to have a key.

2.3 Objects
This section considers each of the following aspects of objects:

• Creation, which refers to the manner in which objects are created by the
programmer.

• Identifiers, which are used by an ODMS to distinguish one object from
another and to find objects.

• Names, which are designated by programmers or end users as convenient
ways to refer to particular objects.

• Lifetimes, which determine how the memory and storage allocated to objects
are managed.

• Structure, which can be either atomic or not, in which case the object is com-
posed of other objects.

All of the object definitions, defined in this chapter, are to be grouped into an enclosing
module that defines a name scope for the types of the model.

module ODLTypes {
exception DatabaseClosed{};
exception TransactionInProgress{};
exception TransactionNotInProgress{};
exception IntegrityError{};
exception LockNotGranted{};

// the following interfaces and classes are defined here
};

8 ODMG Object Model
2.3.1 Object Creation
Objects are created by invoking creation operations on factory interfaces provided on
factory objects supplied to the programmer by the language binding implementation.
The new operation, defined below, causes the creation of a new instance of an object
of the Object type.

interface ObjectFactory {
Object new();

};

All objects have the following ODL interface, which is implicitly inherited by the defi-
nitions of all user-defined objects:

interface Object {
enum Lock_Type{read, write, upgrade};
void lock(in Lock_Type mode) raises(LockNotGranted);
boolean try_lock(in Lock_Type mode);
boolean same_as(in Object anObject);
Object copy();
void delete();

};

Identity comparisons of objects are achieved using the same_as operation. The copy
operation creates a new object that is equivalent to the receiver object. The new object
created is not the “same as” the original object (the same_as operation is an identity
test). Objects, once created, are explicitly deleted from the ODMS using the delete
operation. This operation will remove the object from memory, in addition to the
ODMS.

While the default locking policy of ODMG objects is implicit, all ODMG objects also
support explicit locking operations. The lock operation explicitly obtains a specific
lock on an object. If an attempt is made to acquire a lock on an object that conflicts
with that object’s existing locks, the lock operation will block until the specified lock
can be acquired, some time-out threshold is exceeded, or a transaction deadlock is
detected. If the time-out threshold is crossed, the LockNotGranted exception is raised.
If a transaction deadlock is detected, the transaction deadlock exception is raised. The
try_lock operation will attempt to acquire the specified lock and immediately return a
boolean specifying whether the lock was obtained. The try_lock operation will return
TRUE if the specified lock was obtained and FALSE if the lock to be obtained is in
conflict with an existing lock on that object. See Section 2.9 for additional information
on locking and concurrency.

The IntegrityError exception is raised by operations on relationships and signifies that
referential integrity has been violated. See Section 2.6.2 for more information on this
topic.

2.3 Objects 9
Any access, creation, modification, and deletion of persistent objects must be done
within the scope of a transaction. If attempted outside the scope of a transaction, the
TransactionNotInProgress exception is raised. For simplicity in notation, it is assumed
that all operations defined on persistent objects in this chapter have the ability to raise
the TransactionNotInProgress exception.

2.3.2 Object Identifiers
Because all objects have identifiers, an object can always be distinguished from all
other objects within its storage domain. In this release of the ODMG Object Model, a
storage domain is an ODMS. All identifiers of objects in an ODMS are unique, relative
to each other. The representation of the identity of an object is referred to as its object
identifier. An object retains the same object identifier for its entire lifetime. Thus, the
value of an object’s identifier will never change. The object remains the same object,
even if its attribute values or relationships change. An object identifier is commonly
used as a means for one object to reference another.

Note that the notion of object identifier is different from the notion of primary key in
the relational model. A row in a relational table is uniquely identified by the value of
the column(s) comprising the table’s primary key. If the value in one of those columns
changes, the row changes its identity and becomes a different row. Even traceability to
the prior value of the primary key is lost.

Literals do not have their own identifiers and cannot stand alone as objects; they are
embedded in objects and cannot be individually referenced. Literal values are some-
times described as being constant. An earlier release of the ODMG Object Model
described literals as being immutable. The value of a literal cannot change. Examples
of literal values are the numbers 7 and 3.141596, the characters A and B, and the strings
Fred and April 1. By contrast, objects, which have identifiers, have been described as
being mutable. Changing the values of the attributes of an object, or the relationships
in which it participates, does not change the identity of the object.

Object identifiers are generated by the ODMS, not by applications. There are many
possible ways to implement object identifiers. The structure of the bit pattern repre-
senting an object identifier is not defined by the Object Model, as this is considered to
be an implementation issue, inappropriate for incorporation in the Object Model.
Instead, the operation same_as() is supported, which allows the identity of any two
objects to be compared.

2.3.3 Object Names
In addition to being assigned an object identifier by the ODMS, an object may be given
one or more names that are meaningful to the programmer or end user. The ODMS
provides a function that it uses to map from an object name to an object. The applica-
tion can refer at its convenience to an object by name; the ODMS applies the mapping

10 ODMG Object Model
function to determine the object identifier that locates the desired object. ODMG
expects names to be commonly used by applications to refer to “root” objects, which
provide entry points into the ODMS.

Object names are like global variable names in programming languages. They are not
the same as keys. A key is composed of properties specified in an object type’s inter-
face. An object name, by contrast, is not defined in a type interface and does not corre-
spond to an object’s property values.

The scope of uniqueness of names is an ODMS. The Object Model does not include a
notion of hierarchical name spaces within an ODMS or of name spaces that span
ODMSs.

2.3.4 Object Lifetimes
The lifetime of an object determines how the memory and storage allocated to the
object are managed. The lifetime of an object is specified at the time the object is
created.

Two lifetimes are supported in the Object Model:

• transient
• persistent

An object whose lifetime is transient is allocated memory that is managed by the
programming language runtime system. Sometimes a transient object is declared in the
heading of a procedure and is allocated memory from the stack frame created by the
programming language runtime system when the procedure is invoked. That memory
is released when the procedure returns. Other transient objects are scoped by a process
rather than a procedure activation and are typically allocated to either static memory
or the heap by the programming language system. When the process terminates, the
memory is deallocated. An object whose lifetime is persistent is allocated memory and
storage managed by the ODMS runtime system. These objects continue to exist after
the procedure or process that creates them terminates. Particular programming
languages may refine the notion of transient lifetimes in manners consistent with their
lifetime concepts.

An important aspect of object lifetimes is that they are independent of types. A type
may have some instances that are persistent and others that are transient. This indepen-
dence of type and lifetime is quite different from the relational model. In the relational
model, any type known to the DBMS by definition has only persistent instances, and
any type not known to the DBMS (i.e., any type not defined using SQL) by definition

2.3 Objects 11
has only transient instances. Because the ODMG Object Model supports independence
of type and lifetime, both persistent and transient objects can be manipulated using the
same operations. In the relational model, SQL must be used for defining and using
persistent data, while the programming language is used for defining and using tran-
sient data.

2.3.5 Atomic Objects
An atomic object type is user-defined. There are no built-in atomic object types
included in the ODMG Object Model. See Sections 2.6 and 2.7 for information about
the properties and behavior that can be defined for atomic objects.

2.3.6 Collection Objects
In the ODMG Object Model, instances of collection objects are composed of distinct
elements, each of which can be an instance of an atomic type, another collection, or a
literal type. Literal types will be discussed in Section 2.4. An important distinguishing
characteristic of a collection is that all the elements of the collection must be of the
same type. They are either all the same atomic type, or all the same type of collection,
or all the same type of literal.

The collections supported by the ODMG Object Model include

• Set<t>
• Bag<t>
• List<t>
• Array<t>
• Dictionary<t,v>

Each of these is a type generator, parameterized by the type shown within the angle
brackets. All the elements of a Set object are of the same type t. All the elements of a
List object are of the same type t. In the following interfaces, we have chosen to use the
ODL type Object to represent these typed parameters, recognizing that this can imply
a heterogeneity that is not the intent of this object model.

Collections are created by invoking the operations on the factory interfaces defined for
each particular collection. The new operation, inherited from the ObjectFactory inter-
face, creates a collection with a system-dependent default amount of storage for its
elements. The new_of_size operation creates a collection with the given amount of
initial storage allocated, where the given size is the number of elements for which
storage is to be reserved.

12 ODMG Object Model
Collections all have the following operations:

interface Collection : Object {
exception InvalidCollectionType{};
exception ElementNotFound{Object element; };
unsigned long cardinality();
boolean is_empty();
boolean is_ordered();
boolean allows_duplicates();
boolean contains_element(in Object element);
void insert_element(in Object element);
void remove_element(in Object element)

raises(ElementNotFound);
Iterator create_iterator(in boolean stable);
BidirectionalIterator create_bidirectional_iterator(in boolean stable)

raises(InvalidCollectionType);
Object select_element(in string OQL_predicate);
Iterator select(in string OQL_predicate);
boolean query(in string OQL_predicate,

 inout Collection result);
boolean exists_element(in string OQL_predicate);

};

The number of elements contained in a collection is obtained using the cardinality oper-
ation. The operations is_empty, is_ordered, and allows_duplicates provide a means for
dynamically querying a collection to obtain its characteristics. Element management
within a collection is supported via the insert_element, remove_element, and
contains_element operations. The create_iterator and create_bidirectional_iterator opera-
tions support the traversal of elements within a collection (see Iterator interface below).
The select_element, select, query, and exists_element operations are used to evaluate OQL
predicates upon the contents of a collection. The boolean results of the query and
exists_element operations indicate whether any elements were found as a result of
performing the OQL query.

In addition to the operations defined in the Collection interface, Collection objects also
inherit operations defined in the Object interface. Identity comparisons are determined
using the same_as operation. A copy of a collection returns a new Collection object
whose elements are the same as the elements of the original Collection object (i.e., this
is a shallow copy operation). The delete operation removes the collection from the
ODMS and, if the collection contains literals, also deletes the contents of the collec-
tion. However, if the collection contains objects, the collection remains unchanged.

2.3 Objects 13
An Iterator, which is a mechanism for accessing the elements of a Collection object, can
be created to traverse a collection. The following operations are defined in the Iterator
interface:

interface Iterator {
exception NoMoreElements{};
exception InvalidCollectionType{};
boolean is_stable();
boolean at_end();
void reset();
Object get_element() raises(NoMoreElements);
void next_position() raises(NoMoreElements);
void replace_element (in Object element)

 raises(InvalidCollectionType);
};

interface BidirectionalIterator : Iterator {
boolean at_beginning();
void previous_position() raises(NoMoreElements);

};

The create_iterator and create_bidirectional_iterator operations create iterators that support
forward-only traversals on all collections and bidirectional traversals of ordered
collections. The stability of an iterator determines whether an iteration is safe from
changes made to the collection during iteration. A stable iterator ensures that modifi-
cations made to a collection during iteration will not affect traversal. If an iterator is
not stable, the iteration supports only retrieving elements from a collection during
traversal, as changes made to the collection during iteration may result in missed
elements or the double processing of an element. Creating an iterator automatically
positions the iterator to the first element in the iteration. The get_element operation
retrieves the element currently pointed to by the iterator. The next_position operation
increments the iterator to the next element in the iteration. The previous_position oper-
ation decrements the iterator to the previous element in the iteration. The
replace_element operation, valid when iterating over List and Array objects, replaces the
element currently pointed to by the iterator with the argument passed to the operation.
The reset operation repositions the iterator to the first element in the iteration.

2.3.6.1 Set Objects

A Set object is an unordered collection of elements, with no duplicates allowed. The
following operations are defined in the Set interface:

interface SetFactory : ObjectFactory {
Set new_of_size(in long size);

};

14 ODMG Object Model
class Set : Collection {
attribute set<t> value;
Set create_union(in Set other_set);
Set create_intersection(in Set other_set);
Set create_difference(in Set other_set);
boolean is_subset_of(in Set other_set);
boolean is_proper_subset_of(in Set other_set);
boolean is_superset_of(in Set other_set);
boolean is_proper_superset_of(in Set other_set);

};

The Set type interface has the conventional mathematical set operations, as well as
subsetting and supersetting boolean tests. The create_union, create_intersection, and
create_difference operations each return a new result Set object.

Set refines the semantics of the insert_element operation inherited from its Collection
supertype. If the object passed as the argument to the insert_element operation is not
already a member of the set, the object is added to the set. Otherwise, the set remains
unchanged.

2.3.6.2 Bag Objects

A Bag object is an unordered collection of elements that may contain duplicates. The
following interfaces are defined in the Bag interface:

interface BagFactory : ObjectFactory {
Bag new_of_size(in long size);

};

class Bag : Collection {
attribute bag<t>value;
unsigned long occurrences_of(in Object element);
Bag create_union(in Bag other_bag);
Bag create_intersection(in Bag other_bag);
Bag create_difference(in Bag other_bag);

};

The occurrences_of operation calculates the number of times a specific element occurs
in the Bag. The create_union, create_intersection, and create_difference operations each
return a new result Bag object.

Bag refines the semantics of the insert_element and remove_element operations inherited
from its Collection supertype. The insert_element operation inserts into the Bag object the
element passed as an argument. If the element is already a member of the bag, it is
inserted another time, increasing the multiplicity in the bag. The remove_element oper-
ation removes one occurrence of the specified element from the bag.

2.3 Objects 15
2.3.6.3 List Objects

A List object is an ordered collection of elements. The operations defined in the List inter-
face are positional in nature, in reference either to a given index or to the beginning or
end of a List object. Indexing of a List object starts at zero. The following operations are
defined in the List interface:

interface ListFactory : ObjectFactory {
List new_of_size(in long size);

};

class List : Collection {
exception InvalidIndex{unsigned long index; };
attribute list<t>value;
void remove_element_at(in unsigned long index)

raises(InvalidIndex);
Object retrieve_element_at(in unsigned long index)

raises(InvalidIndex);
void replace_element_at(in Object element, in unsigned long index)

raises(InvalidIndex);
void insert_element_after(in Object element, in unsigned long index)

raises(InvalidIndex);
void insert_element_before(in Object element, in unsigned long index)

raises(InvalidIndex);
void insert_element_first (in Object element);
void insert_element_last (in Object element);
void remove_first_element()

raises(ElementNotFound);
void remove_last_element()

raises(ElementNotFound);
Object retrieve_first_element()

raises(ElementNotFound);
Object retrieve_last_element()

raises(ElementNotFound);
List concat(in List other_list);
void append(in List other_list);

};

The List interface defines operations for selecting, updating, and deleting elements from
a list. In addition, operations that manipulate multiple lists are defined. The concat
operation returns a new List object that contains the list passed as an argument appended
to the receiver list. Both the receiver list and argument list remain unchanged. The append
operation modifies the receiver list by appending the argument list.

16 ODMG Object Model
List refines the semantics of the insert_element and remove_element operations inherited
from its Collection supertype. The insert_element operation inserts the specified object
at the end of the list. The semantics of this operation are equivalent to the list operation
insert_element_last. The remove_element operation removes the first occurrence of the
specified object from the list.

2.3.6.4 Array Objects

An Array object is a dynamically sized, ordered collection of elements that can be
located by position. The following operations are defined in the Array interface:

interface ArrayFactory : ObjectFactory {
Array new_of_size(in long size);

};

class Array : Collection {
exception InvalidIndex{unsigned long index; };
exception InvalidSize{unsigned long size; };
attribute array<t> value;
void replace_element_at(in unsigned long index, in Object element)

raises(InvalidIndex);
void remove_element_at(in unsigned long index)

raises(InvalidIndex);
Object retrieve_element_at(in unsigned long index)

raises(InvalidIndex);
void resize(in unsigned long new_size)

raises(InvalidSize);
};

The remove_element_at operation replaces any current element contained in the cell of
the Array object identified by index with an undefined value. It does not remove the cell
or change the size of the array. This is in contrast to the remove_element_at operation,
defined on type List, which does change the number of elements in a List object. The
resize operation enables an Array object to change the maximum number of elements it
can contain. The exception InvalidSize is raised, by the resize operation, if the value of
the new_size parameter is smaller than the actual number of elements currently
contained in the array.

Array refines the semantics of the insert_element and remove_element operations inher-
ited from its Collection supertype. The insert_element operation increases the size of the
array by one and inserts the specified object in the new position. The remove_element
operation replaces the first occurrence of the specified object in the array with an unde-
fined value.

2.3 Objects 17
2.3.6.5 Dictionary Objects

A Dictionary object is an unordered sequence of key-value pairs with no duplicate keys.
Each key-value pair is constructed as an instance of the following structure:

struct Association {Object key; Object value; };

Iterating over a Dictionary object will result in the iteration over a sequence of Associa-
tions. Each get_element operation, executed on an Iterator object, returns a structure of
type Association.

The following operations are defined in the Dictionary interface:

interface DictionaryFactory : ObjectFactory {
Dictionary new_of_size(in long size);

};

class Dictionary : Collection {
exception DuplicateName{string key; };
exception KeyNotFound{Object key; };
attribute dictionary<t,v>value;
void bind(in Object key, in Object value)

raises(DuplicateName);
void unbind(in Object key) raises(KeyNotFound);
Object lookup(in Object key) raises(KeyNotFound);
boolean contains_key(in Object key);

};

Inserting, deleting, and selecting entries in a Dictionary object are achieved using the
bind, unbind, and lookup operations, respectively. The contains_key operation tests for
the existence of a specific key in the Dictionary object.

Dictionary refines the semantics of the insert_element, remove_element, and
contains_element operations inherited from its Collection supertype. All of these opera-
tions are valid for Dictionary types when an Association is specified as the argument. The
insert_element operation inserts an entry into the Dictionary that reflects the key-value
pair contained in the Association parameter. If the key already resides in the Dictionary,
the existing entry is replaced. The remove_element operation removes the entry from the
Dictionary that matches the key-value pair contained in the Association passed as an
argument. If a matching key-value pair entry is not found in the Dictionary, the Element-
NotFound exception is raised. Similarly, the contains_element operation also uses both
the key and value contained in the Association argument to locate a particular entry in
the Dictionary object. A boolean is returned specifying whether the key-value pair
exists in the Dictionary.

18 ODMG Object Model
2.3.7 Structured Objects
All structured objects support the Object ODL interface. The ODMG Object Model
defines the following structured objects:

• Date
• Interval
• Time
• Timestamp

These types are defined as in the INCITS SQL specification by the following inter-
faces.

2.3.7.1 Date

The following interface defines the factory operations for creating Date objects:

interface DateFactory : ObjectFactory {
exception InvalidDate{};
Date julian_date(in unsigned short year,

in unsigned short julian_day)
raises(InvalidDate);

Date calendar_date(in unsigned short year,
in unsigned short month,
in unsigned short day)

raises(InvalidDate);
boolean is_leap_year(in unsigned short year);
boolean is_valid_date(in unsigned short year,

in unsigned short month,
in unsigned short day);

unsigned short days_in_year(in unsigned short year);
unsigned short days_in_month(in unsigned short year,

in Date::Month month);
Date current();

};

2.3 Objects 19
The following interface defines the operations on Date objects:

 class Date : Object {
enum Weekday {Sunday, Monday, Tuesday, Wednesday,

 Thursday, Friday, Saturday};
enum Month {January, February, March, April, May, June, July,

 August, September, October, November,
 December};

attribute date value;
unsigned short year();
unsigned short month();
unsigned short day();
unsigned short day_of_year();
Month month_of_year();
Weekday day_of_week();
boolean is_leap_year();
boolean is_equal(in Date a_date);
boolean is_greater(in Date a_date);
boolean is_greater_or_equal(in Date a_date);
boolean is_less(in Date a_date);
boolean is_less_or_equal(in Date a_date);
boolean is_between(in Date a_date, in Date b_date);
Date next(in Weekday day);
Date previous(in Weekday day);
Date add_days(in long days);
Date subtract_days(in long days);
long subtract_date(in Date a_date);

};

2.3.7.2 Interval

Intervals represent a duration of time and are used to perform some operations on Time
and Timestamp objects. Intervals are created using the subtract_time operation defined
in the Time interface below. The following interface defines the operations on Interval
objects:

20 ODMG Object Model
class Interval : Object {
attribute interval value;
unsigned short day();
unsigned short hour();
unsigned short minute();
unsigned short second();
unsigned short millisecond();
boolean is_zero();
Interval plus(in Interval an_interval);
Interval minus(in Interval an_interval);

Interval product(in long val);
Interval quotient(in long val);
boolean is_equal(in Interval an_interval);
boolean is_greater(in Interval an_interval);
boolean is_greater_or_equal(in Interval an_interval);
boolean is_less(in Interval an_interval);
boolean is_less_or_equal(in Interval an_interval);

};

2.3.7.3 Time

Times denote specific world times, which are internally stored in Greenwich Mean
Time (GMT). Time zones are specified according to the number of hours that must be
added or subtracted from local time in order to get the time in Greenwich, England.

The following interface defines the factory operations for creating Time objects:

interface TimeFactory : ObjectFactory {
void set_default_time_zone(in TimeZone a_time_zone);
TimeZone default_time_zone();
TimeZone time_zone();
Time from_hmsm(in unsigned short hour,

in unsigned short minute,
in unsigned short second,
in unsigned short millisecond);

Time from_hmsmtz(in unsigned short hour,
in unsigned short minute,
in unsigned short second,
in unsigned short millisecond,
in short tzhour,
in short tzminute);

Time current();
};

2.3 Objects 21
The following interface defines the operations on Time objects:

class Time : Object {
attribute time value;
typedef short TimeZoneTimeZone;
const TimeZone GMT = 0;
const TimeZone GMT1 = 1;
const TimeZone GMT2 = 2;
const TimeZone GMT3 = 3;
const TimeZone GMT4 = 4;
const TimeZone GMT5 = 5;
const TimeZone GMT6 = 6;
const TimeZone GMT7 = 7;
const TimeZone GMT8 = 8;
const TimeZone GMT9 = 9;
const TimeZone GMT10 = 10;
const TimeZone GMT11 = 11;
const TimeZone GMT12 = 12;
const TimeZone GMT_1 = -1;
const TimeZone GMT_2 = -2;
const TimeZone GMT_3 = -3;
const TimeZone GMT_4 = -4;
const TimeZone GMT_5 = -5;
const TimeZone GMT_6 = -6;
const TimeZone GMT_7 = -7;
const TimeZone GMT_8 = -8;
const TimeZone GMT_9 = -9;
const TimeZone GMT_10 = -10;
const TimeZone GMT_11 = -11;
const TimeZone GMT_12 = -12;
const TimeZone USeastern = -5;
const TimeZone UScentral = -6;
const TimeZone USmountain = -7;
const TimeZone USpacific = -8;

22 ODMG Object Model
unsigned short hour();
unsigned short minute();
unsigned short second();
unsigned short millisecond();
short tz_hour();
short tz_minute();
boolean is_equal(in Time a_time);
boolean is_greater(in Time a_time);
boolean is_greater_or_equal(in Time a_time);

boolean is_less(in Time a_time);
boolean is_less_or_equal(in Time a_time);
boolean is_between(in Time a_time,

 in Time b_time);
Time add_interval(in Interval an_interval);
Time subtract_interval(in Interval an_interval);
Interval subtract_time(in Time a_time);

};

2.3.7.4 Timestamp

Timestamps consist of an encapsulated Date and Time. The following interface defines
the factory operations for creating Timestamp objects:

interface TimestampFactory : ObjectFactory {
exception InvalidTimestamp{Date a_date, Time a_time; };
Timestamp current();
Timestamp create(in Date a_date, in Time a_time)

 raises(InvalidTimestamp);
};

2.4 Literals 23
 The following interface defines the operations on Timestamp objects:

class Timestamp : Object {
attribute timestamp value;
Date get_date();
Time get_time();
unsigned short year();
unsigned short month();
unsigned short day();
unsigned short hour();
unsigned short minute();
unsigned short second();
unsigned short millisecond();
short tz_hour();
short tz_minute();
Timestamp plus(in Interval an_interval);
Timestamp minus(in Interval an_interval);
boolean is_equal(in Timestamp a_stamp);
boolean is_greater(in Timestamp a_stamp);
boolean is_greater_or_equal(in Timestamp a_stamp);
boolean is_less(in Timestamp a_stamp);
boolean is_less_or_equal(in Timestamp a_stamp);
boolean is_between(in Timestamp a_stamp,

in Timestamp b_stamp);
};

2.4 Literals
This section considers each of the following aspects of literals:

• types, which includes a description of the types of literals supported by the
standard

• copying, which refers to the manner in which literals are copied
• comparing, which refers to the manner in which literals are compared
• equivalence, which includes the method for determining when two literals

are equivalent

2.4.1 Literal Types
The Object Model supports the following literal types:

• atomic literal
• collection literal
• structured literal

24 ODMG Object Model
2.4.1.1 Atomic Literals

Numbers and characters are examples of atomic literal types. Instances of these types
are not explicitly created by applications, but rather implicitly exist. The ODMG
Object Model supports the following types of atomic literals:

• long
• long long
• short
• unsigned long
• unsigned short
• float
• double
• boolean
• octet
• char (character)
• string
• enum (enumeration)

These types are all also supported by the OMG Interface Definition Language (IDL).
The intent of the Object Model is that a programming language binding should support
the language-specific analog of these types, as well as any other atomic literal types
defined by the programming language. If the programming language does not contain
an analog for one of the Object Model types, then a class library defining the imple-
mentation of the type should be supplied as part of the programming language binding.

Enum is a type generator. An enum declaration defines a named literal type that can take
on only the values listed in the declaration. For example, an attribute gender might be
defined by

attribute enum gender {male, female};

An attribute state_code might be defined by

attribute enum state_code {AK,AL,AR,AZ,CA,...,WY};

2.4.1.2 Collection Literals

The ODMG Object Model supports collection literals of the following types:

• set<t>
• bag<t>
• list<t>
• array<t>
• dictionary<t,v>

2.4 Literals 25
These type generators are analogous to those of collection objects, but these collections
do not have object identifiers. Their elements, however, can be of literal types or object
types.

2.4.1.3 Structured Literals

A structured literal, or simply structure, has a fixed number of elements, each of which
has a variable name and can contain either a literal value or an object. An element of a
structure is typically referred to by a variable name, for example, address.zip_code = 12345;
address.city = "San Francisco". Structure types supported by the ODMG Object Model
include

• date
• interval
• time
• timestamp

2.4.1.3.1 User-Defined Structures

Because the Object Model is extensible, developers can define other structure types as
needed. The Object Model includes a built-in type generator struct, to be used to define
application structures. For example:

struct Address {
string dorm_name;
string room_no;

};

attribute Address dorm_address;

Structures may be freely composed. The Object Model supports sets of structures, struc-
tures of sets, arrays of structures, and so forth. This composability allows the definition
of types like Degrees, as a list whose elements are structures containing three fields:

struct Degree {
string school_name;
string degree_type;
unsigned short degree_year;

};

typedef list<Degree> Degrees;

Each Degrees instance could have its elements sorted by value of degree_year.

Each language binding will map the Object Model structures and collections to mecha-
nisms that are provided by the programming language. For example, Smalltalk includes
its own Collection, Date, Time, and Timestamp classes.

26 ODMG Object Model
2.4.2 Copying Literals
Literals do not have object identifiers and, therefore, cannot be shared. However, literals
do have copy semantics. For example, when iterating through a collection of literals,
copies of the elements are returned. Likewise, when returning a literal-valued attribute of
an object, a copy of the literal value is returned.

2.4.3 Comparing Literals
Since literals do not have object identifiers (not objects), they cannot be compared by
identity (i.e., the same_as operation). As a result, they are compared using the equals
equivalence operation. This becomes important for collection management. For
example, when inserting, removing, or testing for membership in a collection of literals,
the equivalence operation equals is used rather than the identity operation same_as.

2.4.4 Literal Equivalence
Two literals, x and y, are considered equivalent (or equal) if they have the same literal
type and

• are both atomic and contain the same value
• are both sets, have the same parameter type t, and

• if t is a literal type, then for each element in x, there is an element
in y that is equivalent to it, and, for each element in y, there is an
element in x that is equivalent to it

• if t is an Object type, then both x and y contain the same set of
object identifiers

• are both bags, have the same parameter type t, and
• if t is a literal type, then for each element in x, there is an element

in y that is equivalent to it, and, for each element in y, there is an
element in x that is equivalent to it. In addition, for each literal
appearing more than once in x, there is an equivalent literal
occurring the same number of times in y

• if t is an Object type, then both x and y contain the same set of
object identifiers. In addition, for each object identifier appearing
more than once in x, there is an identical object identifier appear-
ing the same number of times in y

2.5 The Full Built-in Type Hierarchy 27
• are both arrays or lists, have the same parameter type t, and for each entry i
• if t is a literal type, then x[i] is equivalent to y[i] (equal)
• if t is an object type, then x[i] is identical to y[i] (same_as)

• are both dictionary literals, and when considered sets of associations, the two
sets are equivalent

• are both structs of the same type, and for each element j
• if the element is a literal type, then x.j and y.j are equivalent

(equal)
• if the element is an object type, then x.j and y.j are identical

(same_as)

2.5 The Full Built-in Type Hierarchy
Figure 2-3 shows the full set of built-in types of the Object Model type hierarchy.
Concrete types are shown in nonitalic font and are directly instantiable. Abstract types
are shown in italics. In the interest of simplifying matters, both types and type genera-
tors are included in the same hierarchy. Type generators are signified by angle brackets
(e.g., Set<>).

The ODMG Object Model is strongly typed. Every object or literal has a type, and
every operation requires typed operands. The rules for type identity and type compat-
ibility are defined in this section.

Two objects or literals have the same type if and only if they have been declared to be
instances of the same named type. Objects or literals that have been declared to be
instances of two different types are not of the same type, even if the types in question
define the same set of properties and operations. Type compatibility follows the
subtyping relationships defined by the type hierarchy. If TS is a subtype of T, then an
object of type TS can be assigned to a variable of type T, but the reverse is not possible.
No implicit conversions between types are provided by the Object Model.

Two atomic literals have the same type if they belong to the same set of literals.
Depending on programming language bindings, implicit conversions may be provided
between the scalar literal types, that is, long, short, unsigned long, unsigned short, float,
double, boolean, octet, and char. No implicit conversions are provided for structured
literals.

28 ODMG Object Model
Literal_type
Atomic_literal

long
long long
short
unsigned long
unsigned short
float
double
boolean
octet
char
string
enum<>

Collection_literal
set<>
bag<>
list<>
array<>
dictionary<>

Structured_literal
date
time
timestamp
interval
structure<>

Object_type
Atomic_object
Collection_object

Set<>
Bag<>
List<>
Array<>
Dictionary<>

Structured_object
Date
Time
Timestamp
Interval

Figure 2-3. Full Set of Built-in Types

2.6 Modeling State—Properties 29
2.6 Modeling State—Properties
A class defines a set of properties through which users can access, and in some cases
directly manipulate, the state of instances of the class. Two kinds of properties are
defined in the ODMG Object Model: attribute and relationship. An attribute is of one
type. A relationship is defined between two types, each of which must have instances
that are referenceable by object identifiers. Thus, literal types, because they do not
have object identifiers, cannot participate in relationships.

2.6.1 Attributes
The attribute declarations in a class define the abstract state of its instances. For
example, the class Person might contain the following attribute declarations:

class Person {
attribute short age;
attribute string name;
attribute enum gender {male, female};
attribute Address home_address;
attribute set<Phone_no> phones;
attribute Department dept;

};

A particular instance of Person would have a specific value for each of the defined
attributes. The value for the dept attribute above is the object identifier of an instance
of Department. An attribute’s value is always either a literal or an object.

It is important to note that an attribute is not the same as a data structure. An attribute
is abstract, while a data structure is a physical representation.

In contrast, attribute declarations in an interface define only abstract behavior of its
instances. While it is common for attributes to be implemented as data structures, it is
sometimes appropriate for an attribute to be implemented as a method. For example, if
the age operation were defined in an interface, the presence of this attribute would not
imply state, but rather the ability to compute the age (e.g., from the birthdate of the
person). For example:

interface i_Person {
attribute short age;

};

class Person : i_Person {
attribute Date birthdate;
attribute string name;
attribute enum gender {male, female};
attribute Address home_address;
attribute set<Phone_no> phones;
attribute Department dept;

};

30 ODMG Object Model
2.6.2 Relationships
Relationships are defined between types. The ODMG Object Model supports only
binary relationships, i.e., relationships between two types. The model does not support
n-ary relationships, which involve more than two types. A binary relationship may be
one-to-one, one-to-many, or many-to-many, depending on how many instances of
each type participate in the relationship. For example, marriage is a one-to-one rela-
tionship between two instances of type Person. A person can have a one-to-many
parent of relationship with many children. Teachers and students typically participate
in many-to-many relationships. Relationships in the Object Model are similar to rela-
tionships in entity-relationship data modeling.

A relationship is defined explicitly by declaration of traversal paths that enable appli-
cations to use the logical connections between the objects participating in the relation-
ship. Traversal paths are declared in pairs, one for each direction of traversal of the
relationship. For example, a professor teaches courses and a course is taught by a
professor. The teaches traversal path would be defined in the declaration for the
Professor type. The is_taught_by traversal path would be defined in the declaration for
the Course type. The fact that these traversal paths both apply to the same relationship
is indicated by an inverse clause in both of the traversal path declarations. For example:

class Professor {
...
relationship set<Course> teaches

inverse Course::is_taught_by;
 ...

}

and

class Course {
...
relationship Professor is_taught_by

inverse Professor::teaches;
 ...

}

The relationship defined by the teaches and is_taught_by traversal paths is a
one-to-many relationship between Professor and Course objects. This cardinality is
shown in the traversal path declarations. A Professor instance is associated with a set of
Course instances via the teaches traversal path. A Course instance is associated with a
single Professor instance via the is_taught_by traversal path.

Traversal paths that lead to many objects can be unordered or ordered, as indicated by
the type of collection specified in the traversal path declaration. If set is used, as in
set<Course>, the objects at the end of the traversal path are unordered.

2.6 Modeling State—Properties 31
The ODMS is responsible for maintaining the referential integrity of relationships.
This means that if an object that participates in a relationship is deleted, then any
traversal path to that object must also be deleted. For example, if a particular Course
instance is deleted, then not only is that object’s reference to a Professor instance via
the is_taught_by traversal path deleted, but also any references in Professor objects to the
Course instance via the teaches traversal path must also be deleted. Maintaining refer-
ential integrity ensures that applications cannot dereference traversal paths that lead to
nonexistent objects.

attribute Student top_of_class;

An attribute may be object-valued. This kind of attribute enables one object to refer-
ence another, without expectation of an inverse traversal path or referential integrity.
While object-valued attributes may be used to implement so-called unidirectional rela-
tionships, such constructions are not considered to be true relationships in this stan-
dard. Relationships always guarantee referential integrity.

It is important to note that a relationship traversal path is not equivalent to a pointer. A
pointer in C++, or an object reference in Smalltalk or Java, has no connotation of a
corresponding inverse traversal path that would form a relationship. The operations
defined on relationship parties and their traversal paths vary according to the traversal
path’s cardinality.

The implementation of relationships is encapsulated by public operations that form and
drop members from the relationship, plus public operations on the relationship target
classes to provide access and to manage the required referential integrity constraints.
When the traversal path has cardinality “one,” operations are defined to form a rela-
tionship, to drop a relationship, and to traverse the relationship. When the traversal
path has cardinality “many,” the object will support methods to add and remove
elements from its traversal path collection. Traversal paths support all of the behaviors
defined previously on the Collection class used to define the behavior of the relation-
ship. Implementations of form and drop operations will guarantee referential integrity
in all cases. In order to facilitate the use of ODL object models in situations where such
models may cross distribution boundaries, we define the relationship interface in
purely procedural terms by introducing a mapping rule from ODL relationships to
equivalent IDL constructions. Then, each language binding will determine the exact
manner in which these constructions are to be accessed.

As in attributes, declarations of relationships that occur within classes define abstract
state for storing the relationship and a set of operations for accessing the relationship.
Declarations that occur within interfaces define only the operations of the relationship,
not the state.

32 ODMG Object Model
2.6.2.1 Cardinality “One” Relationships

For relationships with cardinality “one” such as

relationship X Y inverse Z;

we expand the relationship to an equivalent IDL attribute and operations:

attribute X Y;
void form_Y(in X target) raises(IntegrityError);
void drop_Y(in X target) raises (IntegrityError);

For example, the relationship in the preceding example interface Course would result
in the following definitions (on the class Course):

attribute Professor is_taught_by;
void form_is_taught_by(in Professor aProfessor)

raises(IntegrityError);
void drop_is_taught_by(in Professor aProfessor)

raises(IntegrityError);

2.6.2.2 Cardinality “Many” Relationships

For ODL relationships with cardinality “many” such as

relationship set<X> Y inverse Z;

we expand the relationship to an equivalent IDL attribute and operations. To convert
these definitions into pure IDL, the ODL collection need only be replaced by the
keyword sequence. Note that the add_Y operation may raise an IntegrityError exception
in the event that the traversal is a set that already contains a reference to the given target
X. This exception, if it occurs, will also be raised by the form_Y operation that invoked
the add_Y. For example:

readonly attribute set<X> Y;
void form_Y(in X target) raises(IntegrityError);
void drop_Y(in X target) raises(IntegrityError);
void add_Y(in X target) raises(IntegrityError);
void remove_Y(in X target) raises(IntegrityError);

2.7 Modeling Behavior—Operations 33
The relationship in the preceding example interface Professor would result in the
following definitions (on the class Professor):

readonly attribute set<Course> teaches;
void form_teaches(in Course aCourse)

 raises(IntegrityError);
void drop_teaches(in Course aCourse)

 raises(IntegrityError);
void add_teaches(in Course aCourse)

 raises(IntegrityError);
void remove_teaches(in Course aCourse)

 raises(IntegrityError);

2.7 Modeling Behavior—Operations
Besides the attribute and relationship properties, the other characteristic of a type is its
behavior, which is specified as a set of operation signatures. Each signature defines
the name of an operation, the name and type of each of its arguments, the types of
value(s) returned, and the names of any exceptions (error conditions) the operation can
raise. Our Object Model specification for operations is identical to the OMG CORBA
specification for operations.

An operation is defined on only a single type. There is no notion in the Object Model
of an operation that exists independent of a type or of an operation defined on two or
more types. An operation name need be unique only within a single type definition.
Thus, different types could have operations defined with the same name. The names of
these operations are said to be overloaded. When an operation is invoked using an
overloaded name, a specific operation must be selected for execution. This selection,
sometimes called operation name resolution or operation dispatching, is based on the
most specific type of the object supplied as the first argument of the actual call.

The ODMG had several reasons for choosing to adopt this single-dispatch model
rather than a multiple-dispatch model. The major reason was for consistency with the
C++, Smalltalk, and Java programming languages. This consistency enables seamless
integration of ODMSs into the object programming environment. Another reason to
adopt the classical object model was to avoid incompatibilities with the OMG CORBA
object model, which is classical rather than general.

An operation may have side effects. Some operations may return no value. The ODMG
Object Model does not include formal specification of the semantics of operations. It
is good practice, however, to include comments in interface specifications, for
example, remarking on the purpose of an operation, any side effects it might have, pre-
and post-conditions, and any invariants it is intended to preserve.

34 ODMG Object Model
The Object Model assumes sequential execution of operations. It does not require
support for concurrent or parallel operations, but does not preclude an ODMS from
taking advantage of multiprocessor support.

2.7.1 Exception Model
The ODMG Object Model supports dynamically nested exception handlers, using a
termination model of exception handling. Operations can raise exceptions, and excep-
tions can communicate exception results. Mappings for exceptions are defined by each
language binding. When an exception is raised, information on the cause of the excep-
tion is passed back to the exception handler as properties of the exception. Control is as
follows:

1. The programmer declares an exception handler within scope s capable of
handling exceptions of type t.

2. An operation within a contained scope sn may “raise” an exception of type t.
3. The exception is “caught” by the most immediately containing scope that

has an exception handler. The call stack is automatically unwound by the
runtime system out to the level of the handler. Memory is freed for all
objects allocated in intervening stack frames. Any transactions begun within
a nested scope, that is, unwound by the runtime system in the process of
searching up the stack for an exception handler, are aborted.

4. When control reaches the handler, the handler may either decide that it can
handle the exception or pass it on (reraise it) to a containing handler.

An exception handler that declares itself capable of handling exceptions of type t will
also handle exceptions of any subtype of t. A programmer who requires more specific
control over exceptions of a specific subtype of t may declare a handler for this more
specific subtype within a contained scope.

2.8 Metadata
Metadata is descriptive information about persistent objects that defines the schema of
an ODMS. Metadata is used by the ODMS to define the structure of its object storage,
and at runtime, guides access to the ODMS’s persistent objects. Metadata is stored in
an ODL Schema Repository, which is also accessible to tools and applications using
the same operations that apply to user-defined types. In OMG CORBA environments,
similar metadata is stored in an IDL Interface Repository.

The following interfaces define the internal structure of an ODL Schema Repository.
These interfaces are defined in ODL using relationships that define the graph of inter-
connections between meta objects, which are produced, for example, during ODL
source compilation. While these relationships guarantee the referential integrity of the
meta object graph, they do not guarantee its semantic integrity or completeness. In
order to provide operations that programmers can use to correctly construct valid

2.8 Metadata 35
schemas, several creation, addition, and removal operations are defined that provide
automatic linking and unlinking of the required relationships and appropriate error
recovery in the event of semantic errors.

All of the meta object definitions, defined below, are to be grouped into an enclosing
module that defines a name scope for the elements of the model.

module ODLMetaObjects {
// the following interfaces are defined here

};

2.8.1 Scopes
Scopes define a naming hierarchy for the meta objects in the repository. They support
a bind operation for adding meta objects, a resolve operation for resolving path names
within the repository, and an unbind operation for removing bindings.

interface Scope {
exception DuplicateName{};
exception NameNotFound{string reason; };
void bind(in string name, in MetaObject value)

raises(DuplicateName);
MetaObject resolve(in string name) raises(NameNotFound);
void unbind(in string name) raises(NameNotFound);
list<RepositoryObject> children();

};

2.8.2 Visitors
Visitors provide a convenient “double dispatch” mechanism for traversing the meta
objects in the repository. To utilize this mechanism, a client must implement a Repos-
itoryObjectVisitor object that responds to the visit_... callbacks in an appropriate manner.
Then, by passing this visitor to one of the meta objects in the repository, an appropriate
callback will occur that may be used as required by the client object.

enum MetaKind {mk_attribute, mk_class, mk_collection, mk_constant,
 mk_const_operand, mk_enumeration, mk_exception,
 mk_expression, mk_interface, mk_literal, mk_member,
 mk_module, mk_operation, mk_parameter, mk_primitive_type,
 mk_relationship, mk_repository, mk_structure,
 mk_type_definition, mk_union, mk_union_case };

interface RepositoryObject {
void accept_visitor(in RepositoryObjectVisitor a_repository_object_visitor);
Scope parent();
readonly attribute MetaKind meta_kind;

};

36 ODMG Object Model
interface RepositoryObjectVisitor {
void visit_attribute(in Attribute an_attribute);
void visit_class(in Class a_class);
void visit_collection(in Collection a_collection);
void visit_constant(in Constant a_constant);
void visit_const_operand(in ConstOperand a_const_operand);
void visit_enumeration(in Enumeration an_enumeration);
void visit_exception(in Exception an_exception);
void visit_expression(in Expression an_expression);
void visit_interface(in Interface an_interface);
void visit_literal(in Literal a_literal);
void visit_member(in Member a_member);
void visit_module(in Module a_module);
void visit_operation(in Operation an_operation);
void visit_parameter(in Parameter a_parameter);
void visit_primitive_type(in PrimitiveType a_primitive_type);
void visit_relationship(in Relationship a_relationship);
void visit_repository(in Repository a_repository);
void visit_structure(in Structure a_structure);
void visit_type_definition(in TypeDefinition a_type_definition);
void visit_union(in Union an_union);
void visit_union_case(in UnionCase an_union_case);

};

2.8.3 Meta Objects
All objects in the repository are subclasses of three main interfaces: MetaObject, Spec-
ifier, and Operand. All MetaObjects, defined below, have name and comment attributes.
They participate in a single definedIn relationship with other meta objects, which are
their defining scopes. DefiningScopes are Scopes that contain other meta object defini-
tions using their defines relationship and that have operations for creating, adding, and
removing meta objects within themselves.

typedef string ScopedName;

interface MetaObject : RepositoryObject {
attribute string name;
attribute string comment;
relationship DefiningScope definedIn

inverse DefiningScope::defines;
ScopedName absolute_name();

};

2.8 Metadata 37
enum PrimitiveKind {pk_boolean, pk_char, pk_date, pk_short,
 pk_unsigned_short, pk_date, pk_time, pk_timestamp,
 pk_long, pk_unsigned_long, pk_long_long, pk_float,
 pk_double, pk_octet, pk_interval, pk_void};

enum CollectionKind {ck_list, ck_array, ck_bag, ck_set, ck_dictionary,
 ck_sequence, ck_string };

interface DefiningScope : Scope {
relationship list<MetaObject>defines

inverse MetaObject::definedIn;
exception InvalidType{string reason; };
exception InvalidExpression{string reason; };
exception CannotRemove{string reason; };

PrimitiveType create_primitive_type(in PrimitiveKind primitive_kind);
Collection create_collection(in CollectionKind collection_kind,

in Operand max_size, in Type sub_type);
Dictionary create_dictionary_type(in Type key_type,

in Type sub_type);
Operand create_operand(in string expression)

raises(InvalidExpression);
Member create_member(in string member_name,

in Type member_type);
UnionCase create_union_case(in string case_name,

in Type case_type,
in list<Operand> caseLabels)
raises(DuplicateName, InvalidType);

Constant add_constant(in string name, in Type type,
in Operand value)
raises(DuplicateName);

TypeDefinition add_type_definition(in string name, in Type alias)
raises(DuplicateName);

Enumeration add_enumeration(in string name,
in list<string> element_names)
raises(DuplicateName, InvalidType);

Structure add_structure(in string name, in list<Member> fields)
raises(DuplicateName, InvalidType);

Union add_union(in string name, In Type switch_type,
in list<UnionCase> cases)
raises(DuplicateName, InvalidType);

Exception add_exception(in string name, in Structure result)
raises(DuplicateName);

38 ODMG Object Model
void remove_constant(in Constant object)
raises(CannotRemove);

void remove_type_definition(in TypeDefinition object)
raises(CannotRemove);

void remove_enumeration(in Enumeration object)
raises(CannotRemove);

void remove_structure(in Structure object)
raises(CannotRemove);

void remove_union(in Union object) raises(CannotRemove);
void remove_exception(in Exception object)

raises(CannotRemove);
};

2.8.3.1 Modules

Modules and the Schema Repository itself, which is a specialized module, are Defining-
Scopes that define operations for creating modules and interfaces within themselves.

interface Module : MetaObject, DefiningScope {
 Module add_module(in string name) raises(DuplicateName);
 Interface add_interface(in string name, in list<Interface> inherits)
 raises(DuplicateName);

Class add_class(in string name, in list<Interface> inherits,
in Class extender)
raises(DuplicateName);

 void remove_module(in Module object) raises(CannotRemove);
 void remove_interface(in Interface object) raises(CannotRemove);

void remove_class(in Class object) raises(CannotRemove);
};

interface Repository : Module {};

2.8.3.2 Operations

Operations model the behavior that application objects support. They maintain a signa-
ture list of Parameters and refer to a result type. Operations may raise Exceptions.

interface Operation : MetaObject, Scope {
relationship list<Parameter> signature

inverse Parameter::operation;
relationship Type result

inverse Type::operations;
relationship list<Exception> exceptions

inverse Exception::operations;
};

2.8 Metadata 39
2.8.3.3 Exceptions

Operations may raise Exceptions and thereby return a different set of results. Exceptions
refer to a Structure that defines their results and keep track of the Operations that may
raise them.

interface Exception : MetaObject {
relationship Structure result

inverse Structure::exception_result;
relationship set<Operation> operations

inverse Operation::exceptions;
};

2.8.3.4 Constants

Constants provide a mechanism for statically associating values with names in the
repository. The value is defined by an Operand subclass that is either a literal value
(Literal), a reference to another Constant (ConstOperand), or the value of a constant
expression (Expression). Each constant has an associated type and keeps track of the
other ConstOperands that refer to it in the repository. The value operation allows the
constant’s actual value to be computed at any time.

interface Constant : MetaObject {
relationship Operand the_Value

inverse Operand::value_of;
relationship Type type

inverse Type::constants;
relationship set<ConstOperand> referenced_by

inverse ConstOperand::references;
relationship Enumeration enumeration

inverse Enumeration::elements;
Object value();

};

2.8.3.5 Properties

Properties form an abstract class over the Attribute and Relationship meta objects that
define the abstract state of an application object. They have an associated type.

interface Property : MetaObject {
relationship Type type

inverse Type::properties;
};

40 ODMG Object Model
2.8.3.5.1 Attributes

Attributes are properties that maintain simple abstract state. They may be read-only, in
which case there is no associated accessor for changing their values.

interface Attribute : Property {
attribute boolean is_read_only;

};

2.8.3.5.2 Relationships

Relationships model bilateral object references between participating objects. In use,
two relationship meta objects are required to represent each traversal direction of the
relationship. Operations are defined implicitly to form and drop the relationship, as
well as accessor operations for manipulating its traversals.

enum Cardinality {c1_1, c1_N, cN_1, cN_M};

interface Relationship : Property {
relationship Relationship traversal

inverse Relationship::traversal;
Cardinality get_cardinality();

};

2.8.3.6 Types

TypeDefinitions are meta objects that define new names, or aliases, for the types to
which they refer. Much of the information in the repository consists of type definitions
that define the datatypes used by the application.

interface TypeDefinition : Type {
relationship Type alias

inverse Type::type_defs;
};

Type meta objects are used to represent information about datatypes. They participate
in a number of relationships with the other meta objects that use them. These relation-
ships allow Types to be easily administered within the repository and help to ensure the
referential integrity of the repository as a whole.

2.8 Metadata 41
interface Type : MetaObject {
relationship set<Collection> collections

inverse Collection::subtype;
relationship set<Dictionary> dictionaries

inverse Dictionary::key_type;
relationship set<Specifier> specifiers

inverse Specifier::type;
relationship set<Union> unions

inverse Union::switch_type;
relationship set<Operation> operations

inverse Operation::result;
relationship set<Property> properties

inverse Property::type;
relationship set<Constant> constants

inverse Constant::type;
relationship set<TypeDefinition> type_defs

inverse TypeDefinition::alias;
};

interface PrimitiveType : Type {
readonly attribute PrimitiveKind primitive_kind;

};

2.8.3.6.1 Interfaces

Interfaces are the most important types in the repository. Interfaces define the abstract
behavior of application objects and contain operations for creating and removing
Attributes, Relationships, and Operations within themselves in addition to the operations
inherited from DefiningScope. Interfaces are linked in a multiple-inheritance graph with
other Inheritance objects by two relationships, inherits and derives. They may contain
most kinds of MetaObjects, except Modules and Interfaces.

interface Interface : Type, DefiningScope {
struct ParameterSpec {

string param_name;
Direction param_mode;
Type param_type; };

relationship set<Interface> inherits
inverse Interface::derives;

relationship set<Interface> derives
inverse Interface::inherits;

exception BadParameter{string reason; };
exception BadRelationship{string reason; };

42 ODMG Object Model
 Attribute add_attribute(in string attr_name, in Type attr_type)
 raises(DuplicateName);
 Relationship add_relationship(in string rel_name,
 in Type rel_type,
 in Relationship rel_traversal)
 raises(DuplicateName, BadRelationship);
 Operation add_operation(in string op_name,
 in Type op_result,
 in list<ParameterSpec> op_params,
 in list<Exception> op_raises)
 raises(DuplicateName, BadParameter);
 void remove_attribute(in Attribute object)
 raises(CannotRemove);
 void remove_relationship(in Relationship object)
 raises(CannotRemove);
 void remove_operation(in Operation object)
 raises(CannotRemove);
};

2.8.3.6.2 Classes

Classes are a subtype of Interface whose properties define the abstract state of objects
stored in an ODMS. Classes are linked in a single inheritance hierarchy whereby state
and behavior are inherited from an extender class. Classes may define keys and extents
over their instances.

interface Class : Interface {
attribute list<string> extents;
attribute list<string> keys;
relationship Class extender

 inverse Class::extensions;
relationship set<Class> extensions

 inverse Class::extender;
};

2.8.3.6.3 Collections

Collections are types that aggregate variable numbers of elements of a single subtype
and provide different ordering, accessing, and comparison behaviors. The maximum
size of the collection may be specified by a constant or constant expression. If unspec-
ified, this relationship will be bound to the literal 0.

2.8 Metadata 43
interface Collection : Type {
readonly attribute CollectionKind collection_kind;
relationship Operand max_size

inverse Operand::size_of;
relationship Type subtype

inverse Type::collections;
boolean is_ordered();
unsigned long bound();

};

interface Dictionary : Collection {
relationship Type key_type

inverse Type::dictionaries;
};

2.8.3.6.4 Constructed Types

Some types contain named elements that themselves refer to other types and are said
to be constructed from those types. The ScopedType interface is an abstract class that
consolidates these mechanisms for its subclasses Enumeration, Structure, and Union.
Enumerations contain Constants, Structures contain Members, and Unions contain Union-
Cases. Unions, in addition, have a relationship with a switch_type that defines the
discriminator of the union.

interface ScopedType : Scope, Type {};
interface Enumeration : ScopedType {

relationship list<Constant> elements
inverse Constant::enumeration;

};

interface Structure : ScopedType {
relationship list<Member> fields

inverse Member::structure_type;
relationship Exception exception_result

inverse Exception::result;
};

interface Union : ScopedType {
relationship Type switch_type

inverse Type::unions;
relationship list<UnionCase> cases

inverse UnionCase::union_type;
};

44 ODMG Object Model
2.8.4 Specifiers
Specifiers are used to assign a name to a type in certain contexts. They consolidate these
elements for their subclasses. Members, UnionCases, and Parameters are referenced by
Structures, Unions, and Operations, respectively.

interface Specifier : RepositoryObject {
attribute string name;
relationship Type type

inverse Type::specifiers;
};

interface Member : Specifier {
relationship Structure structure_type

inverse Structure::fields;
};
interface UnionCase : Specifier {

relationship Union union_type
inverse Union::cases;

relationship list<Operand> case_labels
inverse Operand::case_in;

};

enum Direction {mode_in, mode_out, mode_inout } ;
interface Parameter : Specifier {

attribute Direction parameter_mode;
relationship Operation operation

inverse Operation::signature;
};

2.8.5 Operands
Operands form the base type for all constant values in the repository. They have a value
operation and maintain relationships with the other Constants, Collections, UnionCases,
and Expressions that refer to them. Literals contain a single literalValue attribute and
produce their value directly. ConstOperands produce their value by delegating to their
associated constant. Expressions compute their value by evaluating their operator on the
values of their operands.

2.9 Locking and Concurrency Control 45
interface Operand : RepositoryObject {
relationship Expression operand_in

inverse Expression::the_operands;
relationship Constant value_of

inverse Constant::the_value;
relationship Collection size_of

inverse Collection::max_size;
relationship UnionCase case_in

inverse UnionCase::case_labels;
Object value();

};

interface Literal : Operand {
attribute Object literal_value;

};

interface ConstOperand : Operand {
relationship Constant references

inverse Constant::referenced_by;
};

Expressions are composed of one or more Operands and an associated operator. While
unary and binary operators are the only operations allowed by ODL, this structure
allows generalized n-ary operations to be defined in the future.

interface Expression : Operand {
attribute string operator;
relationship list<Operand> the_operands

inverse Operand::operand_in;
};

2.9 Locking and Concurrency Control
The ODMG Object Model uses a conventional lock-based approach to concurrency
control. This approach provides a mechanism for enforcing shared or exclusive access
to objects. The ODMS supports the property of serializability by monitoring requests
for locks and granting a lock only if no conflicting locks exist. As a result, access to
persistent objects is coordinated across multiple transactions, and a consistent view of
the ODMS is maintained for each transaction.

The ODMG Object Model supports traditional pessimistic concurrency control as its
default policy, but does not preclude an ODMS from supporting a wider range of
concurrency control policies.

46 ODMG Object Model
2.9.1 Lock Types
The following locks are supported in the ODMG Object Model:

• read
• write
• upgrade

Read locks allow shared access to an object. Write locks indicate exclusive access to
an object. Readers of a particular object do not conflict with other readers, but writers
conflict with both readers and writers. Upgrade locks are used to prevent a form of
deadlock that occurs when two processes both obtain read locks on an object and then
attempt to obtain write locks on that same object. Upgrade locks are compatible with
read locks, but conflict with upgrade and write locks. Deadlock is avoided by initially
obtaining upgrade locks, instead of read locks, for all objects that intend to be modi-
fied. This avoids any potential conflicts when a write lock is later obtained to modify
the object.

These locks follow the same semantics as those defined in the OMG Concurrency
Control Service.

2.9.2 Implicit and Explicit Locking
The ODMG Object Model supports both implicit and explicit locking. Implicit locks
are locks acquired during the course of the traversal of an object graph. For example,
read locks are obtained each time an object is accessed and write locks are obtained
each time an object is modified. In the case of implicit locks, no specific operation is
executed in order to obtain a lock on an object. However, explicit locks are acquired
by expressly requesting a specific lock on a particular object. These locks are obtained
using the lock and try_lock operations defined in the Object interface. While read and
write locks can be obtained implicitly or explicitly, upgrade locks can only be obtained
explicitly via the lock and try_lock operations.

2.9.3 Lock Duration
By default, all locks (read, write, and upgrade) are held until the transaction is either
committed or aborted. This type of lock retention is consistent with the SQL-92 defi-
nition of transaction isolation level 3. This isolation level prevents dirty reads, nonre-
peatable reads, and phantoms.

2.10 Transaction Model
Programs that use persistent objects are organized into transactions. Transaction
management is an important ODMS functionality, fundamental to data integrity,
shareability, and recovery. Any access, creation, modification, and deletion of persis-
tent objects must be done within the scope of a transaction.

2.10 Transaction Model 47
A transaction is a unit of logic for which an ODMS guarantees atomicity, consistency,
isolation, and durability. Atomicity means that the transaction either finishes or has no
effect at all. Consistency means that a transaction takes the ODMS from one internally
consistent state to another internally consistent state. There may be times during the
transaction when the ODMS is inconsistent. However, isolation guarantees that no
other user of the ODMS sees changes made by a transaction until that transaction
commits. Concurrent users always see an internally consistent ODMS. Durability
means that the effects of committed transactions are preserved, even if there should be
failures of storage media, loss of memory, or system crashes. Once a transaction has
committed, the ODMS guarantees that changes made by that transaction are never lost.
When a transaction commits, all of the changes made by that transaction are perma-
nently installed in the persistent storage and made visible to other users of the ODMS.
When a transaction aborts, none of the changes made by it are installed in the persistent
storage, including any changes made prior to the time of abort. The execution of
concurrent transactions must yield results that are indistinguishable from results that
would have been obtained if the transactions had been executed serially. This property
is sometimes called serializability.

2.10.1 Distributed Transactions
Distributed transactions are transactions that span multiple processes and/or that span
more than one database, as described in ISO XA and the OMG Object Transaction
Service. The ODMG does not define an interface for distributed transactions because
this is already defined in the ISO XA standard and because it is not visible to the
programmers but used only by transaction monitors.Vendors are not required to
support distributed transactions, but if they do, their implementations must be
XA-compliant.

2.10.2 Transactions and Processes
The ODMG Object Model assumes a linear sequence of transactions executing within
a thread of control; that is, there is exactly one current transaction for a thread, and that
transaction is implicit in that thread's operations. If an ODMG language binding
supports multiple threads in one address space, then transaction isolation must be
provided between the threads. Of course, transaction isolation is also provided
between threads in different address spaces or threads running on different machines.

A transaction runs against a single logical ODMS. Note that a single logical ODMS
may be implemented as one or more physical persistent stores, possibly distributed on
a network. The transaction model neither requires nor precludes support for transac-
tions that span multiple threads, multiple address spaces, or more than one logical
ODMS.

48 ODMG Object Model
In the current Object Model, transient objects in an address space are not subject to
transaction semantics. This means that aborting a transaction does not restore the state
of modified transient objects.

2.10.3 Transaction Operations
There are two types that are defined to support transaction activity within an ODMS:
TransactionFactory and Transaction.

The TransactionFactory type is used to create transactions. The following operations are
defined in the TransactionFactory interface:

interface TransactionFactory {
Transaction new();
Transaction current();

};

The new operation creates Transaction objects. The current operation returns the Trans-
action that is associated with the current thread of control. If there is no such associa-
tion, the current operation returns nil.

Once a Transaction object is created, it is manipulated using the Transaction interface.
The following operations are defined in the Transaction interface:

interface Transaction {
void begin() raises(TransactionInProgress,

DatabaseClosed);
void commit() raises(TransactionNotInProgress);
void abort() raises(TransactionNotInProgress);
void checkpoint() raises(TransactionNotInProgress);
void join() raises(TransactionNotInProgress);
void leave() raises(TransactionNotInProgress);
boolean isOpen();

};

After a Transaction object is created, it is initially closed. An explicit begin operation is
required to open a transaction. If a transaction is already open, additional begin opera-
tions raise the TransactionInProgress exception.

The commit operation causes all persistent objects created or modified during a trans-
action to be written to the ODMS and to become accessible to other Transaction objects
running against that ODMS. All locks held by the Transaction object are released.
Finally, it also causes the Transaction object to complete and become closed. The Trans-
actionNotInProgress exception is raised if a commit operation is executed on a closed
Transaction object.

2.10 Transaction Model 49
The abort operation causes the Transaction object to complete and become closed. The
ODMS is returned to the state it was in prior to the beginning of the transaction. All
locks held by the Transaction object are released. The TransactionNotInProgress exception
is raised if an abort operation is executed on a closed Transaction object.

A checkpoint operation is equivalent to a commit operation followed by a begin opera-
tion, except that locks held by the Transaction object are not released. Therefore, it
causes all modified objects to be committed to the ODMS, and it retains all locks held
by the Transaction object. The Transaction object remains open. The TransactionNotIn-
Progress exception is raised if a checkpoint operation is executed on a closed Transaction
object.

ODMS operations are always executed in the context of a transaction. Therefore, to
execute any operations on persistent objects, an active Transaction object must be asso-
ciated with the current thread. The join operation associates the current thread with a
Transaction object. If the Transaction object is open, persistent object operations may be
executed; otherwise a TransactionNotInProgress exception is raised.

If an implementation allows multiple active Transaction objects to exist, the join and
leave operations allow a thread to alternate between them. To associate the current
thread with another Transaction object, simply execute a join on the new Transaction
object. If necessary, a leave operation is automatically executed to disassociate the
current thread from its current Transaction object. Moving from one Transaction object
to another does not commit or abort a Transaction object. When the current thread has no
current Transaction object, the leave operation is ignored.

After a Transaction object is completed, to continue executing operations on persistent
objects, either another open Transaction object must be associated with the current
thread or a begin operation must be applied to the current Transaction object to make it
open again.

Multiple threads of control in one address space can share the same transaction through
multiple join operations on the same Transaction object. In this case, no locking is
provided between these threads; concurrency control must be provided by the user.
The transaction completes when any one of the threads executes a commit or abort oper-
ation against the Transaction object.

In order to begin a transaction, a Database object must be opened. During the processing
of a transaction, any operation executed on a Database object is bound to that transac-
tion. A Database object may be bound to any number of transactions. All Database
objects, bound to transactions in progress, must remain open until those transactions
have completed via either a commit or a rollback. If a close operation is called on the
Database object prior to the completion of all transactions, the TransactionInProgress
exception is raised and the Database object remains open.

50 ODMG Object Model
2.11 Database Operations
An ODMS may manage one or more logical ODMSs, each of which may be stored in
one or more physical persistent stores. Each logical ODMS is an instance of the type
Database, which is supplied by the ODMS. Instances of type Database are created using
the DatabaseFactory interface:

interface DatabaseFactory {
Database new();

};

Once a Database object is created by using the new operation, it is manipulated using
the Database interface. The following operations are defined in the Database interface:

interface Database {
exception DatabaseOpen{};
exception DatabaseNotFound{};
exception ObjectNameNotUnique{};
exception ObjectNameNotFound{};
void open(in string odms_name)

raises(DatabaseNotFound,
 DatabaseOpen);

void close() raises(DatabaseClosed,
 TransactionInProgress);

void bind(in Object an_object, in string name)
raises(DatabaseClosed,

 ObjectNameNotUnique,
 TransactionNotInProgress);

Object unbind(in string name)
raises(DatabaseClosed,

 ObjectNameNotFound,
 TransactionNotInProgress);

Object lookup(in string object_name)
raises(DatabaseClosed,

 ObjectNameNotFound,
 TransactionNotInProgress);

ODLMetaObjects::Module schema()
raises(DatabaseClosed,

 TransactionNotInProgress);
};

The open operation must be invoked, with an ODMS name as its argument, before any
access can be made to the persistent objects in the ODMS. The Object Model requires
only a single ODMS to be open at a time. Implementations may extend this capability,

2.11 Database Operations 51
including transactions that span multiple ODMSs. The close operation must be invoked
when a program has completed all access to the ODMS. When the ODMS closes, it
performs necessary cleanup operations, and if a transaction is still in progress, raises
the TransactionInProgress exception. Except for the open and close operations, all other
Database operations must be executed within the scope of a Transaction. If not, a Trans-
actionNotInProgress exception will be raised.

The lookup operation finds the identifier of the object with the name supplied as the
argument to the operation. This operation is defined on the Database type, because the
scope of object names is the ODMS. The names of objects in the ODMS, the names of
types in the ODMS schema, and the extents of types instantiated in the ODMS are
global. They become accessible to a program once it has opened the ODMS. Named
objects are convenient entry points to the ODMS. A name is bound to an object using
the bind operation. Named objects may be unnamed using the unbind operation.

The schema operation accesses the root meta object that defines the schema of the
ODMS. The schema of an ODMS is contained within a single Module meta object.
Meta objects contained within the schema may be located via navigation of the appro-
priate relationships or by using the resolve operation with a scoped name as the argu-
ment. A scoped name is defined by the syntax of ODL and uses double colon (::)
delimiters to specify a search path composed of meta object names that uniquely iden-
tify each meta object by its location within the schema. For example, using examples
defined in Chapter 3, the scoped name “Professor::name” resolves to the Attribute meta
object that represents the name of class Professor.

The Database type may also support operations designed for ODMS administration, for
example, create, delete, move, copy, reorganize, verify, backup, restore. These kinds of
operations are not specified here, as they are considered an implementation consider-
ation outside the scope of the Object Model.

52 ODMG Object Model

 Chapter 3

Object Specification Languages
3.1 Introduction
This chapter defines the specification languages used to represent ODMG-compliant
object data management systems (ODMSs). These programming language-independent
specification languages are used to define the schema, operations, and state of an
ODMS. The primary objective of these languages is to facilitate the migration of data
across ODMG-compliant ODMSs. These languages also provide a step toward the
interoperability of ODMSs from multiple vendors.

Two specification languages are discussed in this chapter: Object Definition Language
(ODL) and Object Interchange Format (OIF).

3.2 Object Definition Language
The Object Definition Language is a specification language used to define the specifi-
cations of object types that conform to the ODMG Object Model. ODL is used to
support the portability of object schemas across conforming ODMSs.

Several principles have guided the development of the ODL, including the following:

• ODL should support all semantic constructs of the ODMG Object Model.
• ODL should not be a full programming language, but rather a definition lan-

guage for object specifications.
• ODL should be programming language independent.
• ODL should be compatible with the OMG’s Interface Definition Language

(IDL).
• ODL should be extensible, not only for future functionality, but also for phys-

ical optimizations.
• ODL should be practical, providing value to application developers, while

being supportable by the ODMS vendors within a relatively short time frame
after publication of the specification.

ODL is not intended to be a full programming language. It is a definition language for
object specifications. Database management systems (DBMSs) have traditionally
provided facilities that support data definition (using a Data Definition Language or
DDL) and data manipulation (using a Data Manipulation Language or DML). The DDL
allows users to define their datatypes and interfaces. DML allows programs to create,
delete, read, change, and so on, instances of those datatypes. The ODL described in this

2 ODMG Object Specification Languages
chapter is a DDL for object types. It defines the characteristics of types, including their
properties and operations. ODL defines only the signatures of operations and does not
address definition of the methods that implement those operations. The ODMG stan-
dard does not provide an OML specification. Chapters 5, 6, and 7 define standard APIs
to bind conformant ODMSs to C++, Smalltalk, and Java, respectively.

ODL is intended to define object types that can be implemented in a variety of
programming languages. Therefore, ODL is not tied to the syntax of a particular
programming language. Users can use ODL to define schema semantics in a
programming language–independent way. A schema specified in ODL can be
supported by any ODMG-compliant ODMS and by mixed-language implementations.
This portability is necessary for an application to be able to run with minimal modi-
fication on a variety of ODMSs. Some applications may in fact need simultaneous
support from multiple ODMSs. Others may need to access objects created and stored
using different programming languages. ODL provides a degree of insulation for
applications against the variations in both programming languages and underlying
ODMS products.

The C++, Smalltalk, and Java ODL bindings are designed to fit smoothly into the
declarative syntax of their host programming language. Due to the differences inherent
in the object models native to these programming languages, it is not always possible
to achieve consistent semantics across the programming language–specific versions of
ODL. Our goal has been to minimize these inconsistencies, and we have noted, in
Chapters 5, 6, and 7, the restrictions applicable to each particular language binding.

The syntax of ODL extends IDL—the Interface Definition Language developed by the
OMG as part of the Common Object Request Broker Architecture (CORBA). IDL was
itself influenced by C++, giving ODL a C++ flavor. ODL adds to IDL the constructs
required to specify the complete semantics of the ODMG Object Model.

ODL also provides a context for integrating schemas from multiple sources and appli-
cations. These source schemas may have been defined with any number of object
models and data definition languages; ODL is a sort of lingua franca for integration.
For example, various standards organizations like STEP/PDES (Express), INCITS
X3H2 (SQL), INCITS X3H7 (Object Information Management), CFI (CAD Frame-
work Initiative), and others have developed a variety of object models and, in some
cases, data definition languages. Any of these models can be translated to an ODL
specification (Figure 3-1). This common basis then allows the various models to be
integrated with common semantics. An ODL specification can be realized concretely
in an object programming language like C++, Smalltalk, or Java.

3.2 Object Definition Language 3
Figure 3-1. ODL Mapping to Other Languages

3.2.1 Specification
A type is defined by specifying its interface or by its class in ODL. The top-level
Extended Backus Naur Form (EBNF) for ODL is as follows:

<interface> ::= <interface_dcl>
| <interface_forward_dcl>

<interface_dcl> ::= <interface_header>
{ [<interface_body>] }

<interface_forward_dcl>::= interface <identifier>
<interface_header> ::= interface <identifier>

[<inheritance_spec>]
<class> ::= <class_dcl> | <class_forward_dcl>
<class_dcl> ::= <class_header> { <interface_body> }
<class_forward_dcl> ::= class <identifier>
<class_header> ::= class <identifier>

[extends <scopedName>]
[<inheritance_spec>]
[<type_property_list>]

The characteristics of the type itself appear first, followed by lists that define the prop-
erties and operations of its interface or class. Any list may be omitted if it is not
applicable.

STEP/Express SQL-99 Other

Language-independent ODL

C++ SQL-99 Smalltalk OtherJava

4 ODMG Object Specification Languages
3.2.1.1 Type Characteristics

Supertype information, extent naming, and specification of keys (i.e., uniqueness
constraints) are all characteristics of types, but do not apply directly to the types’
instances. The EBNF for type characteristics follows:

<inheritance_spec> ::= : <scoped_name> [, <inheritance_spec>]
<type_property_list> ::= ([<extent_spec>] [<key_spec>])
<extent_spec> ::= extent <string>
<key_spec> ::= key[s] <key_list>
<key_list> ::= <key> | <key> , <key_list>
<key> ::= <property_name> | (<property_list>)
<property_list> ::= <property_name>

 | <property_name> , <property_list>
<property_name> ::= <identifier>
<scoped_name> ::= <identifier>

| :: <identifier>
| <scoped_name> :: <identifier>

Each supertype must be specified in its own type definition. Each attribute or relation-
ship traversal path named as (part of) a type’s key must be specified in the key_spec of
the type definition. The extent and key definitions may be omitted if inapplicable to
the type being defined. A type definition should include no more than one extent or
key definition.

A simple example for the class definition of a Professor type is

class Professor
(extent professors)
{

properties
operations

};

Keywords are highlighted.

3.2.1.2 Instance Properties

A type’s instance properties are the attributes and relationships of its instances. These
properties are specified in attribute and relationship specifications. The EBNF is

<interface_body> ::= <export> | <export> <interface_body>
<export> ::= <type_dcl> ;

| <const_dcl> ;
| <except_dcl> ;
| <attr_dcl> ;
| <rel_dcl> ;
| <op_dcl> ;

3.2 Object Definition Language 5
3.2.1.3 Attributes

The EBNF for specifying an attribute follows:

<attr_dcl> ::= [readonly] attribute
<domain_type> <attribute_name>
 [<fixed_array_size>]

<attribute_name> ::= <identifier>
<domain_type> ::= <simple_type_spec>

| <struct_type>
| <enum_type>

For example, adding attribute definitions to the Professor type’s ODL specification:

class Professor
(extent professors)
{

attribute string name;
attribute unsigned short faculty_id[6];
attribute long soc_sec_no[10];
attribute Address address;
attribute set<string> degrees;
relationships
operations

};

Note that the keyword attribute is mandatory.

3.2.1.4 Relationships

A relationship specification names and defines a traversal path for a relationship. A
traversal path definition includes designation of the target type and information about
the inverse traversal path found in the target type. The EBNF for relationship specifi-
cation follows:

<rel_dcl> ::= relationship
<target_of_path> <identifier>
 inverse <inverse_traversal_path>

<target_of_path> ::= <identifier>
| <coll_spec> < <identifier> >

<inverse_traversal_path> ::= <identifier> :: <identifier>

Traversal path cardinality information is included in the specification of the target of
a traversal path. The target type must be specified with its own type definition. Use of
the collection_type option of the EBNF indicates cardinality greater than one on the
target side. If this option is omitted, the cardinality on the target side is one. The most
commonly used collection types are expected to be Set, for unordered members on the

6 ODMG Object Specification Languages
target side of a traversal path, and List, for ordered members on the target side. Bags are
supported as well. The inverse traversal path must be defined in the property list of the
target type’s definition. For example, adding relationships to the Professor type’s inter-
face specification:

class Professor
(extent professors)
{

attribute string name;
attribute unsigned short faculty_id[6];
attribute long soc_sec_no[10];
attribute Address address;
attribute set<string> degrees;
relationship set<Student> advises

inverse Student::advisor;
relationship set<TA> teaching_assistants

inverse TA::works_for;
relationship Department department

inverse Department::faculty;
operations

};

The keyword relationship is mandatory. Note that the attribute and relationship specifi-
cations can be mixed in the property list. It is not necessary to define all of one kind of
property, then all of the other kind.

3.2.1.5 Operations

ODL is compatible with IDL for specification of operations:

<op_dcl> ::= [<op_attribute>] <op_type_spec>
<identifier> <parameter_dcls>
[<raises_expr>] [<context_expr>]

<op_attribute> ::= oneway
<op_type_spec> ::= <simple_type_spec>

| void
<parameter_dcls> ::= ([<param_dcl_list>])
<param_dcl_list> ::= <param_dcl>

| <param_dcl> , <param_dcl_list>
<param_dcl> ::= <param_attribute> <simple_type_spec>

<declarator>
<param_attribute> ::= in | out| inout
<raises_expr> ::= raises (<scoped_name_list>)
<context_expr> ::= context (<string_literal_list>)
<scoped_name_list> ::= <scoped_name>

| <scoped_name> , <scoped_name_list>
<string_literal_list> ::= <string_literal>

| <string_literal> , <string_literal_list>

See Section 3.2.4 for the full EBNF for operation specification.

3.2 Object Definition Language 7
3.2.2 An Example in ODL
This section illustrates the use of ODL to declare the schema for a sample application
based on a university database. The object types in the sample application are shown as
rectangles in Figure 3-2. Relationship types are shown as lines. The cardinality permitted
by the relationship type is indicated by the arrows on the ends of the lines:

In the example, the type Professor is-a subtype of the type Employee, and the type TA (for
Teaching Assistant) is-a subtype of both Employee and Student-IF. The large gray arrows
run from subtype to supertype in the figure. Notice also that Student-IF is defined by an
interface, whereas the other types are defined by classes. In the ODL that follows, the
classes Student and TA that inherit from Student-IF have duplicated the attribute and rela-
tionship declarations from that interface. Class TA will have an extra instance variable to
support its assists relationship.

Figure 3-2. Graphical Representation of Schema

one-to-one

one-to-many

many-to-many

is-a

extends

Course

Section

Employee

TA Professor

has_ prerequisites

takes

is_taken_by

has_sections

teaches

is_taught_by

assists

has_TA

is_ prerequisite_ for

is_section_of

Student-IF

Student

Salary

8 ODMG Object Specification Languages
A complete ODL definition for the specifications of the schema’s types follows:

module ODMGExample {
exception NoSuchEmployee();
exception AlreadyOffered{};
exception NotOffered{};
exception IneligibleForTenure{};
exception UnsatisfiedPrerequisites{};
exception SectionFull{};
exception CourseFull{};
exception NotRegisteredInSection{};
exception NotRegisteredForThatCourse{};

struct Address {string college, string room_number; };

class Department
(extent departments)
{

attribute string name;
relationship list<Professor> has_professors

inverse Professor::works_in;
relationship list<Course> offers_courses

inverse Course::offered_by;
};

class Course
(extent courses)
{

attribute string name;
attribute string number;
relationship Department offered_by

inverse Department::offers_courses;
relationship list<Section> has_sections

inverse Section::is_section_of;
relationship set<Course> has_prerequisites
 inverse Course::is_prerequisite_for;
relationship set<Course> is_prerequisite_for

 inverse Course::has_prerequisites;
boolean offer (in unsigned short semester)

raises (AlreadyOffered);
boolean drop (in unsigned short semester) raises (NotOffered);

};

3.2 Object Definition Language 9
class Section
(extent sections)
{

attribute string number;
relationship Professor is_taught_by

inverse Professor::teaches;
relationship TA has_TA

inverse TA::assists;
relationship Course is_section_of

inverse Course::has_sections;
relationship set<Student> is_taken_by

inverse Student::takes;
};

class Salary
{

attribute float base;
attribute float overtime;
attribute float bonus;

};

class Employee
(extent employees)
{

attribute string name;
attribute short id;
attribute Salary annual_salary;
void hire();
void fire() raises (NoSuchEmployee);

};

class Professor extends Employee
(extent professors)
{

attribute enum Rank {full, associate, assistant} rank;
relationship Department works_in

inverse Department::has_professors;
relationship set<Section> teaches

inverse Section::is_taught_by;
short grant_tenure() raises (IneligibleForTenure);

};

10 ODMG Object Specification Languages
interface StudentIF
{

attribute string name;
attribute string student_id;
attribute Address dorm_address;
relationship set<Section> takes

inverse Section::is_taken_by;
boolean register_for_course (in unsigned short course,

 in unsigned short Section)
raises (UnsatisfiedPrerequisites, SectionFull, CourseFull);

void drop_course (in Course c)
raises (NotRegisteredForThatCourse);

void assign_major (in Department d);
short transfer (in Section old_section,

 in Section new_section)
raises (SectionFull, NotRegisteredInSection);

};

classTA extends Employee : StudentIF
{

relationship Section assists
inverse Section::has_TA;

attribute string name;
attribute string student_id;
attribute struct Address dorm_address;
relationship set<Section> takes

inverse Section::is_taken_by;
};

class Student : StudentIF
(extent students)
{

attribute string name;
attribute string student_id;
attribute struct Address dorm_address;
relationship set<Section> takes

inverse Section::is_taken_by;
};

};

3.2 Object Definition Language 11
3.2.3 Another Example
Following is another example that will be used as an illustration of ODL. The same
example will be used in Chapter 5 to illustrate the binding of ODL to C++. The appli-
cation manages personnel records. The ODMS manages information about people,
their marriages, children, and history of residences. Person has an extent named people.
A Person has name, address, spouse, children, and parents properties. The operations birth,
marriage, ancestors, and move are also characteristics of Person: birth adds a new child to
the children list of a Person instance, marriage defines a spouse for a Person instance,
ancestors computes the set of Person instances who are the ancestors of a particular
Person instance, and move changes a Person instance’s address. An Address is a structure
whose properties are number, street, and city_name; number is of type unsigned short, street
and city are of type string. City has properties city_code, name, and population. City_code
is of type unsigned short; name is of type string; population is a set of references to Person
objects. Spouse is a traversal path to a spouse:spouse 1:1 recursive relationship; children
is one of the traversal paths of a children:parents m:n recursive relationship. Parents is
the other traversal path of the children:parents relationship.

The ODL specifications for this schema follow:

module Chapter5Example {

class Person
(extent people)
{

exception NoSuchPerson{};
attribute string name;
attribute struct Address {

unsigned short number,
string street,
string city_name} address;

relationship Person spouse
inverse Person::spouse;

relationship set<Person> children
inverse Person::parents;

relationship list<Person> parents
inverse Person::children;

void birth (in string name);
boolean marriage (in string person_name)

raises (NoSuchPerson);
unsigned short ancestors (out set<Person> all_ancestors)

raises (NoSuchPerson);
void move (in string new_address);

};

12 ODMG Object Specification Languages
class City
(extent cities)
{

attribute unsigned short city_code;
attribute string name;
attribute set<Person> population;

};

};

3.2.4 ODL Grammar
Following is the complete EBNF for the ODL, which includes the IDL. The numbers
on the production rules match their numbers in the OMG CORBA specification. Modi-
fied production rules have numbers suffixed by an asterisk, for example, (2*). New
production rules have alpha extensions, for example, (2a).

(1) <specification>::= <definition>
| <definition> <specification>

(2*) <definition>::= <type_dcl> ;
| <const_dcl> ;
| <except_dcl> ;
| <interface> ;
| <module> ;
| <class> ;

(2a) <class>::=<class_dcl> | <class_forward_dcl>
(2b) <class_dcl>::= <class_header> { <interface_body> }
(2c) <class_forward_dcl>::=class <identifier>
(2d) <class_header>::= class <identifier>

[extends <scoped_name>]
[<inheritance_spec>]
[<type_property_list>]

(2e) <type_property_list>
::= ([<extent_spec>] [<key_spec>])

(2f) <extent_spec>::= extent <string>
(2g) <key_spec>::= key[s] <key_list>
(2h) <key_list>::= <key> | <key> , <key_list>
(2i) <key>::= <property_name> | (<property_list>)
(2j) <property_list>::= <property_name>

 | <property_name> , <property_list>
(2k) <property_name>::= <identifier>
(3) <module>::= module <identifier> { <specification> }
(4*) <interface>::= <interface_dcl>

| <interface_forward_dcl>
(5) <interface_dcl>::= <interface_header>

3.2 Object Definition Language 13
{ [<interface_body>] }
(6*) <interface_forward_dcl>::= interface <identifier>
(7) <interface_header>::= interface <identifier>

[<inheritance_spec>]
(8) <interface_body>::=

<export> | <export> <interface_body>
(9*) <export>::= <type_dcl>;

| <const_dcl>;
| <except_dcl>;
| <attr_dcl>;
| <rel_dcl>;
| <op_dcl>;

(10) <inheritance_spec>::=
: <scoped_name> [, <inheritance_spec>]

(11) <scoped_name>::= <identifier>
| :: <identifier>
| <scoped_name> :: <identifier>

(12) <const_dcl>::= const <const_type> <identifier> =
<const_exp>

(13) <const_type>::= <integer_type>
| <char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <scoped_name>

(14) <const_exp>::= <or_expr>
(15) <or_expr>::= <xor_expr>

| <or_expr> | <xor_expr>
(16) <xor_expr>::= <and_expr>

| <xor_expr> ^ <and_expr>
(17) <and_expr>::= <shift_expr>

| <and_expr> & <shift_expr>
(18) <shift_expr>::= <add_expr>

| <shift_expr> >> <add_expr>
| <shift_expr> << <add_expr>

(19) <add_expr>::= <mult_expr>
| <add_expr> + <mult_expr>
| <add_expr> - <mult_expr>

(20) <mult_expr>::= <unary_expr>
| <mult_expr> * <unary_expr>
| <mult_expr> / <unary_expr>
| <mult_expr> % <unary_expr>

(21) <unary_expr>::= <unary_operator> <primary_expr>

14 ODMG Object Specification Languages
| <primary_expr>
(22) <unary_operator>::= -

| +
| ~

(23) <primary_expr>::= <scoped_name>
| <literal>
| (<const_exp>)

(24) <literal>::= <integer_literal>
| <string_literal>
| <character_literal>
| <floating_pt_literal>
| <boolean_literal>

(25) <boolean_literal>::= TRUE
| FALSE

(26) <positive_int_const>::= <const_exp>
(27) <type_dcl>::= typedef <type_declarator>

| <struct_type>
| <union_type>
| <enum_type>

(28) <type_declarator>::= <type_spec> <declarators>
(29) <type_spec>::= <simple_type_spec>

| <constr_type_spec>
(30) <simple_type_spec>::= <base_type_spec>

| <template_type_spec>
| <scoped_name>

(31*) <base_type_spec>::= <floating_pt_type>
| <integer_type>
| <char_type>
| <boolean_type>
| <octet_type>
| <date_type>
| <time_type>
| <interval_type>
| <timestamp_type>

(31a) <date_type> ::= date
(31b) <time_type> ::= time
(31c) <interval_type> ::= interval
(31d) <timestamp_type> ::= timestamp
(32*) <template_type_spec>::= <array_type>

| <string_type>
| <coll_type>

3.2 Object Definition Language 15
(32a) <coll_type> ::= <coll_spec> < <simple_type_spec> >
| dictionary < <simple_type_spec> ,
<simple_type_spec> >

(32b) <coll_spec> ::= set | list | bag
(33) <constr_type_spec>::= <struct_type>

| <union_type>
| <enum_type>

(34) <declarators>::= <declarator>
| <declarator> , <declarators>

(35) <declarator>::= <simple_declarator>
| <complex_declarator>

(36) <simple_declarator>::= <identifier>
(37) <complex_declarator>::= <array_declarator>
(38) <floating_pt_type>::= float

| double
(39) <integer_type>::= <signed_int>

| <unsigned_int>
(40) <signed_int>::= <signed_long_int>

| <signed_long_long_int>
| <signed_short_int>

(41) <signed_long_int>::= long
(41a) <signed_long_long_int>::= long long
(42) <signed_short_int>::= short
(43) <unsigned_int>::= <unsigned_long_int>

| <unsigned_short_int>
(44) <unsigned_long_int>::= unsigned long
(45) <unsigned_short_int>::= unsigned short
(46) <char_type>::= char
(47) <boolean_type>::= boolean
(48) <octet_type>::= octet
(49) <any_type>::= any
(50) <struct_type>::= struct <identifier> { <member_list> }
(51) <member_list>::= <member> | <member>

<member_list>
(52) <member>::= <type_spec> <declarators> ;
(53) <union_type>::= union <identifier> switch

(<switch_type_spec>) { <switch_body> }
(54) <switch_type_spec>::= <integer_type>

| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_name>

(55) <switch_body>::= <case> | <case> <switch_body>
(56) <case>::= <case_label_list> <element_spec> ;

16 ODMG Object Specification Languages
(56a) <case_label_list>::= <case_label>
 | <case_label> <case_label_list>

(57) <case_label>::= case <const_exp> :
| default :

(58) <element_spec>::= <type_spec> <declarator>
(59) <enum_type>::= enum <identifier> { <enumerator_list> }
(59a) <enumerator_list>::= <enumerator>

 | <enumerator> , <enumerator_list>
(60) <enumerator>::= <identifier>
(61*) <array_type>::= <array_spec> < <simple_type_spec> ,

<positive_int_const> >
| <array_spec> < <simple_type_spec> >

(61a*) <array_spec>::= array | sequence
(62) <string_type>::= string < <positive_int_const> >

| string
(63) <array_declarator>::= <identifier> <array_size_list>
(63a) <array_size_list>::= <fixed_array_size>

 | <fixed_array_size> <array_size_list>
(64) <fixed_array_size>::= [<positive_int_const>]
(65*) <attr_dcl> ::= [readonly] attribute

<domain_type> <attr_list>
(65a) <attr_list>::= <attribute_name> [<fixed_array_size>]

[, <attr_list>]
(65b) <attribute_name>::= <identifier>
(65c) <domain_type>::= <simple_type_spec>

| <struct_type>
| <enum_type>

(65d) <rel_dcl> ::= relationship
<target_of_path>
<identifier>
inverse <inverse_traversal_path>

(65e) <target_of_path>::= <identifier>
| <coll_spec> < <identifier> >

(65f) <inverse_traversal_path>::=
<identifier> :: <identifier>

(66) <except_dcl>::= exception <identifier>
{ [<member_list>] }

(67) <op_dcl>::= [<op_attribute>] <op_type_spec>
<identifier> <parameter_dcls>
[<raises_expr>] [<context_expr>]

(68) <op_attribute>::= oneway
(69) <op_type_spec>::= <simple_type_spec>

| void

3.3 Object Interchange Format 17
(70) <parameter_dcls>::= ([<param_dcl_list>])
(70a) <param_dcl_list>::= <param_dcl>

 | <param_dcl> , <param_dcl_list>
(71) <param_dcl>::= <param_attribute>

<simple_type_spec>
<declarator>

(72) <param_attribute>::= in
| out
| inout

(73) <raises_expr>::= raises (<scoped_name_list>)
(73a) <scoped_name_list>::= <scoped_name>

 | <scoped_name> ,
<scoped_name_list>

(74) <context_expr>::= context (<string_literal_list>)
(74a) <string_literal_list>::= <string_literal>

| <string_literal> , <string_literal_list>

3.3 Object Interchange Format
The Object Interchange Format (OIF) is a specification language used to dump and
load the current state of an ODMS to or from a file or set of files. OIF can be used to
exchange persistent objects between ODMSs, seed data, provide documentation, and
drive test suites.

Several principles have guided the development of OIF:

• OIF should support all ODMS states compliant to the ODMG Object Model
and ODL schema definitions.

• OIF should not be a full programming language, but rather a specification
language for persistent objects and their states.

• OIF should be designed according to related standards as STEP or INCITS,
wherever possible.

• OIF needs no keywords other than the type, attribute, and relationship identi-
fiers provided with the ODL definition of an ODMS schema.

3.3.1 ODMS States
The following are used to characterize the state of all objects contained in an ODMS:

• object identifiers
• type bindings
• attribute values
• links to other objects

Each of these items are specified within OIF.

18 ODMG Object Specification Languages
3.3.2 Basic Structure
An OIF file contains object definitions. Each object definition specifies the type,
attribute values, and relationships to other objects for the defined object.

3.3.2.1 Object Tag Names

Object identifiers are specified with object tag names unique to the OIF file(s). A tag
name is visible within the entire set of OIF files. Forward declarations for an object
definition are not needed. Cyclic usage of tag names is supported.

3.3.3 Object Definitions
The following is a simple example of an object definition:

Jack Person{}

With this definition, an instance of the class Person is created. The attribute values of
this object are not initialized. The object tag Jack is used to reference the defined object
within the entire set of OIF files.

3.3.3.1 Physical Clustering

The definition

Paul (Jack) Engineer{}

instructs the load utility to create a new persistent instance of the class Engineer “phys-
ically near” the persistent object referenced by the identifier Jack. The semantics of the
term “physically near” are implementation-dependent. If no such “clustering direc-
tive” is provided, the order of object definitions in the OIF file is used to determine the
clustering order.

The identifier Engineer is a global keyword within the entire set of OIF files and, there-
fore, cannot be used as an object tag name.

3.3.4 Attribute Value Initialization
An arbitrary subset of the attributes of an object can be initialized explicitly. Assume
that an ODL definition is given as follows:

interface Person {
attribute string Name;
attribute unsigned short Age;

};

The code fragment

Sally Person{Name "Sally", Age 11}

3.3 Object Interchange Format 19
defines an instance of the class Person and initializes the attribute Name with the value
“Sally” and the attribute Age with the value 11. The assignment statements for the
attributes of an object may appear in an arbitrary order. For example, the object
definition

Sally Person{Age 11, Name "Sally"}

is equivalent to the object definition above.

The identifiers Name and Age are keywords within the scope of an object definition for
instances of Person and its subclasses.

3.3.4.1 Short Initialization Format

If all attributes are initialized using the order specified in the ODL definition, the
attribute names and commas can be omitted. For example, the object definition

Sally Person{"Sally" 11}

would be sufficient for initializing an object with the above ODL definition. If commas
are omitted, white space is required to separate the attributes.

3.3.4.2 Copy Initialization

Often a large number of basic objects have to be initialized with the same set of
attribute values. For this purpose, an alternative form of the object definition can be
used. The object definition

McBain(McPerth) Company{McPerth}

creates a new instance of the class Company “physically near” the basic object refer-
enced by the tag McPerth. The new object is initialized with the attribute values of the
company object McPerth. Using this notation, the object tag name, McPerth, must be
unique across all attribute names.

3.3.4.3 Boolean Literals

An attribute of type boolean can be initialized with the boolean literals TRUE or
FALSE.

3.3.4.4 Character Literals

An attribute of type char can be initialized with a character literal. A character literal is
one or more characters enclosed in single quotes. These characters are interpreted
using MIME format.

3.3.4.5 Integer Literals

An attribute of type short, long or long long can be initialized with an integer literal. An
integer literal consists of an optional minus sign followed by a sequence of digits. If

20 ODMG Object Specification Languages
the sequence starts with a ‘0’, the sequence is interpreted as an octal integer. If the
sequence begins with ‘0x’ or ‘0X’, the sequence is interpreted as a hexadecimal
integer. Otherwise, the sequence is interpreted as a decimal integer. Octal digits
include 0 through 7, and hexadecimal digits include ‘a’ through ‘f’ and ‘A’ through
‘F’.

An attribute of type unsigned short or unsigned long can be initialized with an unsigned
integer literal. This is accomplished by specifying an integer literal without a minus
sign.

3.3.4.6 Float Literals

Attributes of type float or double can be initialized with a float literal. A float literal
consists of an optional minus sign, an integer part, a decimal point, a fraction part, an
e or E, and an optional negatively signed exponent. The integer, fraction, and exponent
parts of a float literal consist of a sequence of decimal digits. The specification of the
integer part or the fraction part (not both) is optional. The specification of the decimal
point or the letter e (or E) and the exponent (not both) is also optional.

3.3.4.7 String Literals

An attribute of type string can be initialized with a string literal. String constants are
specified as a sequence of characters enclosed in double quotes. These characters are
interpreted using MIME format.

3.3.4.8 Range Overflow

If an integer value or float value exceeds the range of an attribute type, a runtime error
is generated.

3.3.4.9 Initializing Attributes of Structured Type

Attributes of structured types can be initialized similarly to the initialization of persis-
tent objects. For example, consider the following ODL definition of a Person object:

struct PhoneNumber {
unsigned short CountryCode;
unsigned short AreaCode;
unsigned short PersonCode;

};

struct Address {
string Street;
string City;
PhoneNumber Phone;

};

3.3 Object Interchange Format 21
interface Person
attribute string Name;
attribute Address PersonAddress;

};

This example is initialized in OIF as follows:

Sarah Person{Name "Sarah",
PersonAddress {Street "Willow Road",

City "Palo Alto",
Phone {CountryCode 1,

AreaCode 415,
PersonCode 1234}}}

3.3.4.10 Initializing Multidimensional Attributes

An attribute of a class may have a dimension greater than one. For example:

interface Engineer {
attribute unsigned short PersonID[3];

};

The OIF syntax to initialize such attributes is as follows:

Jane Engineer{PersonID{[0] 450,
[2] 270}}

The fields of the array are indexed starting from zero. Any attributes not specified
remain uninitialized.

If a subset of values for a continuous sequence of field indices starting with zero is
provided, the index specifier can be omitted. For example, the ODL definition

interface Sample {
attribute unsigned short Values[1000];

};

could be defined in OIF as

T1 Sample{Values{450,
23,
270,
22}}

or

22 ODMG Object Specification Languages
T1 Sample{Values{[0] 450,
[1] 23,
[2] 270,
[3] 22}}

The commas are optional in all of the above examples.

3.3.4.11 Initializing Collections

Persistent instances of classes containing collections like

interface Professor: Person {
attribute set<string> Degrees;

};

are initialized in OIF as follows:

Feynman Professor{Degrees {“Masters", "PhD"}}

If the collection is a dynamic array, for example,

struct Point {
float X;
float Y;

};

interface Polygon {
attribute array<Point> RefPoints;

};

the following OIF code fragment initializes the fields with indices 5 and 11 with the
specified values:

P1 Polygon{RefPoints{[5]{X 7.5, Y 12.0},
[11]{X 22.5, Y 23.0}}}

The unspecified fields remain uninitialized. If one of the indices used in the object defi-
nition exceeds the current size of the variable size array, the array will be resized in
order to handle the desired range.

Multidimensional attributes that contain variable size array types like

interface PolygonSet {
attribute array<float> PolygonRefPoints[10];

};

are initialized in OIF as

3.3 Object Interchange Format 23
P2 PolygonSet{PolygonRefPoints{[0]{[0] 9.7, [1] 8.98, ...},
...,
[10]{[0] 22.0, [1] 60.1, ...}}}

3.3.5 Link Definitions
The following sections describe the OIF syntax for specifying relationships.

3.3.5.1 Cardinality “One” Relationships

Links for relationships with cardinality “one” are treated as attributes. They are initial-
ized using the tag name of the object. For example, the ODL definition

interface Person{
relationship Company Employer

inverse Company::Employees;
};

is specified in OIF as

Jack Person{Employer McPerth}

This object definition results in a link typed Employer between the object tagged Jack
and the object tagged McPerth.

3.3.5.2 Cardinality “Many” Relationships

Links for relationships with cardinality “many” are treated as collections. They are
initialized using the tag names of all the linked objects. For example, the ODL
definition

interface Company {
relationship set<Person> Employees

inverse Person::Employer;
};

is specified in OIF as

McPerth Company{Employees {Jack, Joe, Jim}}

This object definition establishes links typed Employees between instances of the object
tagged McPerth and the objects Jack, Joe, and Jim.

3.3.5.3 Type Safety

The definition of a link within an object definition is type safe. That is, an object tag
must be used whose type or subtype is the type of the relationship. If an object tag is
specified whose type or subtype is not the same type as the relationship, a runtime error
is generated.

24 ODMG Object Specification Languages
3.3.5.4 Cycles

Cyclic links may be established as the result of object name tags being visible across
the entire set of OIF files. For example, the following ODL definition

interface Person {
relationship Employer

inverse Company::Employees;
relationship Property

inverse Company::Owner;
};

interface Company {

relationship set<Person> Employees
inverse Person::Employer;

relationship Person Owner
inverse Person::Property;

};

is handled in OIF as

Jack Person{Employer McPerth}
McPerth Company{Owner Jack}

3.3.6 Data Migration
Objects named for a particular ODMS can be used in OIF files using a forward decla-
ration mechanism. In this case, a search for an object with an object name, and
matching type, equivalent to the declared tag is performed in the existing ODMS. If
the declared object is not found, a runtime error is generated. For example, the ODL
definition

interface Node {
relationship set<Node> Pred

inverse Node::Succ;
relationship set<Node> Succ

inverse Node::Pred;
};

is declared in OIF as

A Node{Pred {B}}
E Node
B Node{Pred {E}, Succ {C}}
C Node{Pred {A}, Succ{F}}
F Node

3.3 Object Interchange Format 25
In this example, a lookup of the E and F objects, and their types, is performed in the
existing ODMS. If found, they are linked with the newly created objects B and C. Note,
similar to object definitions, forward declarations are visible within the entire set of
OIF files, and therefore, may appear at arbitrary locations within the files.

3.3.7 Command Line Utilities
Each compliant ODMS supporting the OIF provides the utilities odbdump and odbload.

3.3.7.1 Dump ODMS

The following command line utility is used to dump an ODMS. For example, the
command

odmsdump <odms_name>

will create an OIF representation of the specified ODMS. Object tag names are created
automatically using implementation-dependent name generation algorithms.

3.3.7.2 Load ODMS

The following command line utility is used to load an ODMS. For example, the
command

odmsload <odms_name> <file 1> ... <file n>

populates the ODMS with the objects defined in the specified files.

3.3.8 OIF Grammar
EBNF is used for syntactical definitions of OIF. A rule has the form

<symbol> ::= expression

where the syntax declaration expression describes a set of phrases named by the
nonterminal symbol <symbol>. The following notions are used for the syntax expres-
sions:

<n> is a nonterminal symbol that must appear at some place within the
grammar on the left side of a rule (all nonterminal symbols must be
derived to terminal symbols)

t represents the terminal symbol t
x y represents x followed by y
x | y represents x or y
[x] represents x or empty
{x} represents a possibly empty sequence of x

Following is the complete EBNF for the OIF specification language.

(1) <OIF_file>::= <object_def> { <object_def> }

26 ODMG Object Specification Languages
(2) <object_def>::= <object_tag> [<physically_near_to>]
<classname> [{ <initialization> }]

(3) <physically_near_to>::= (<object_tag>)
(4) <initialization>::= <attribute_list>

| <value_list>
| <object_tag>

(5) <attribute_list>::= <attribute> { , <attribute> }
(6) <attribute>::= <fieldname> <value>
(7) <value_list>::= <value> { [,] <value> }
(8) <value>::= <literal>

| <struct_value>
| <array_value>
| <collection_value>

(9) <literal>::= <boolean_literal>
| <character_literal>
| <integer_literal>
| <float_literal>
| <string_literal>
| <object_tag>
| null

(10) <struct_value>::= { <attribute_list> }
(11) <array_value>::= { <value_list> }

| { <indexed_value_list> }
(12) <indexed_value_list>::= [<index>] <value>

{ , [<index>] <value> }
(13) <coll_elements>::= <coll_element>

{ , <coll_element> }
(14) <index>::= <integer_literal>
(15) <collection_value>::= { <value_list> }
(16) <fieldname>::= <identifier>
(17) <classname>::= <identifier>
(18) <object_tag>::= <identifier>
(19) <boolean_literal>::= true

| false
(20) <character_literal>::= ‘ <character> ‘
(21) <integer_literal>::= <octal_integer>

| <decimal_integer>
| <hexadecimal_integer>

(22) <octal_integer>::= [-] 0 <octal_digit> { <octal_digit> }
(23) <octal_digit>::= 0 .. 7
(24) <decimal_integer>::= [-] <decimal_digit>

{ <decimal_digit> }
(25) <decimal_digit>::= <octal_digit> | 8 | 9

3.3 Object Interchange Format 27
(26) <hexadecimal_integer>::= [-] 0x <hexadecimal_digit>
{ <hexadecimal_digit> }
| [-] 0X <hexadecimal_digit>
{ <hexadecimal_digit> }

(27) <hexadecimal_digit>::= <decimal_digit> | a .. f | A .. F
(28) <float_literal>::= [-] [<integer_part>] .

<fraction_part> [<exponent>]
| [-] <integer_part>. [<fraction_part>]
<exponent>
| [-] <integer_part> <exponent>

(29) <exponent>::= e [-] <exponent_part>
| E [-] <exponent_part>

(30) <integer_part>::= <decimal_digit> { <decimal_digit> }
(31) <fraction_part>::= <decimal_digit> { <decimal_digit> }
(32) <exponent_part>::= < decimal_digit>

{ <decimal_digit> }
(33) <string_literal>::= “ { <character> }”
(34) <identifier>::= <first_letter> { <next_letter> }
(35) <first_letter>::= a .. z | A .. Z | _
(36) <next_letter>::= <first_letter>

| <decimal _digit

28 ODMG Object Specification Languages

 Chapter 4

Object Query Language
4.1 Introduction
In this chapter, we describe an object query language named OQL, which supports the
ODMG data model. It is complete and simple. It deals with complex objects without
privileging the set construct and the select-from-where clause.

We first describe the design principles of the language in Section 4.2, then we intro-
duce in the next sections the main features of OQL. We explain the input and result of
a query in Section 4.3. Section 4.4 deals with object identity. Section 4.5 presents the
path expressions. Section 4.6 explains how undefined values are handled within OQL.
In Section 4.7, we show how OQL can invoke operations, and Section 4.8 describes
how polymorphism is managed by OQL. Section 4.9 concludes this part of the presen-
tation of the main concepts by exemplifying the property of operator composition.

Finally, a formal and complete definition of the language is given in Section 4.10. For
each feature of the language, we give the syntax, its semantics, and an example. Alter-
nate syntax for some features is described in Section 4.11, which completes OQL in
order to accept any syntactical form of SQL. The chapter ends with the formal syntax,
which is given in Section 4.12.

4.2 Principles
Our design is based on the following principles and assumptions:

• OQL relies on the ODMG Object Model.
• OQL is very close to SQL-92. Extensions concern object-oriented notions,

like complex objects, object identity, path expressions, polymorphism, oper-
ation invocation, and late binding.

• OQL provides high-level primitives to deal with sets of objects but is not
restricted to this collection construct. It also provides primitives to deal with
structures, lists, and arrays and treats such constructs with the same effi-
ciency.

• OQL is a functional language where operators can freely be composed, as
long as the operands respect the type system. This is a consequence of the
fact that the result of any query has a type that belongs to the ODMG type
model and thus can be queried again.

• OQL is not computationally complete. It is a simple-to-use query language.

2 ODMG Object Query Language
• Based on the same type system, OQL can be invoked from within program-
ming languages for which an ODMG binding is defined. Conversely, OQL
can invoke operations programmed in these languages.

• OQL does not provide explicit update operators but rather invokes opera-
tions defined on objects for that purpose, and thus does not breach the
semantics of an object model, which, by definition, is managed by the
“methods” defined on the objects.

• OQL provides declarative access to objects. Thus, OQL queries can be eas-
ily optimized by virtue of this declarative nature.

• The formal semantics of OQL can easily be defined.

4.3 Query Input and Result
As a stand-alone language, OQL allows querying denotable objects starting from their
names, which act as entry points into a database. A name may denote any kind of
object, that is, atomic, structure, collection, or literal.

As an embedded language, OQL allows querying denotable objects that are supported
by the native language through expressions yielding atoms, structures, collections, and
literals. An OQL query is a function that delivers an object whose type may be inferred
from the operator contributing to the query expression. This point is illustrated with
two short examples.

Assume a schema that defines the types Person and Employee as follows. These types
have the extents Persons and Employees, respectively. One of these persons is the
chairman (and there is an entry-point Chairman to that person). The type Person defines
the name, birthdate, and salary as attributes and the operation age. The type Employee, a
subtype of Person, defines the relationship subordinates and the operation seniority.

select distinct x.age
from Persons x
where x.name = "Pat"

This selects the set of ages of all persons named Pat, returning a literal of type
set<integer>.

select distinct struct(a: x.age, s: x.sex)
from Persons x
where x.name = "Pat"

This does about the same, but for each person, it builds a structure containing age and
sex. It returns a literal of type set<struct>.

select distinct struct(name: x.name, hps: (select y
from x.subordinates as y
where y.salary >100000))

from Employees x

4.4 Dealing with Object Identity 3
This is the same type of example, but now we use a more complex function. For each
employee we build a structure with the name of the employee and the set of the
employee’s highly paid subordinates. Notice we have used a select-from-where clause
in the select part. For each employee x, to compute hps, we traverse the relationship
subordinates and select among this set the employees with a salary superior to $100,000.
The result of this query is therefore a literal of the type set<struct>, namely:

set<struct (name: string, hps: bag<Employee>)>

We could also use a select operator in the from part:

select struct (a: x.age, s: x.sex)

from (select y from Employees y where y.seniority = "10") as x

where x.name = "Pat"

Of course, you do not always have to use a select-from-where clause:

Chairman

retrieves the Chairman object.

Chairman.subordinates

retrieves the set of subordinates of the Chairman.

Persons

gives the set of all persons.

4.4 Dealing with Object Identity
The query language supports both objects (i.e., having an OID) and literals (identity
equals their value), depending on the way these objects are constructed or selected.

4.4.1 Creating Objects
To create an object with identity, a type name constructor is used. For instance, to
create a Person defined in the previous example, simply write

Person(name: "Pat", birthdate: date ’1956-3-28’ , salary: 100,000)

The parameters in parentheses allow you to initialize certain properties of the object.
Those that are not explicitly initialized are given a default value.

You distinguish such a construction from the construction expressions that yield
objects without identity. For instance,

struct (a: 10, b: "Pat")

creates a structure with two fields.

4 ODMG Object Query Language
If you now return to the example in Section 4.3, instead of computing literals, you can
build objects. For example, assuming that these object types are defined:

typedef set<long> vectint;
class stat{

attribute short a;
attribute char c;

};
typedef bag<stat> stats;

you can carry out the following queries:

vectint(select distinct age
 from Persons
 where name = "Pat")

which returns an object of type vectint and

stats(select stat (a: age, s: sex)
 from Persons
 where name = "Pat")

which returns an object of type stats.

4.4.2 Selecting Existing Objects
The extraction expressions may return:

• A collection of objects with identity, for example, select x from Persons x
where x.name ="Pat" returns a collection of persons whose name is Pat.

• An object with identity, for example, element (select x from Persons x where
x.passport_number=1234567) returns the person whose passport number is
1234567.

• A collection of literals, for example, select x.passport_number from Persons x
where x.name="Pat" returns a collection of integers giving the passport num-
bers of people named Pat.

• A literal, for example, Chairman.salary.

Therefore, the result of a query is an object with or without object identity: Some
objects are generated by the query language interpreter, and others produced from the
current database.

4.5 Path Expressions
As explained above, you can enter a database through a named object, but more gener-
ally as long as you get an object, you need a way to navigate from it and reach the right
data. To do this in OQL, we use the “.” (or indifferently “->”) notation, which enables

4.5 Path Expressions 5
us to go inside complex objects, as well as to follow simple relationships. For example,
we have a Person p and we want to know the name of the city where this person's spouse
lives.

Example:

p.spouse.address.city.name

This query starts from a Person, gets his/her spouse, a Person again, goes inside the
complex attribute of type Address to get the City object, whose name is then accessed.

This example treated a 1-1 relationship; let us now look at n-p relationships. Assume
we want the names of the children of the person p. We cannot write p.children.name
because children is a list of references, so the interpretation of the result of this query
would be undefined. Intuitively, the result should be a collection of names, but we need
an unambiguous notation to traverse such a multiple relationship, and we use the
select-from-where clause to handle collections just as in SQL.

Example:

select c.name
from p.children c

The result of this query is a value of type bag<string>. If we want to get a set, we simply
drop duplicates, like in SQL, by using the distinct keyword.

Example:

select distinct c.name
from p.children c

Now we have a means to navigate from an object to any object following any relation-
ship and entering any complex subvalues of an object. For instance, we want the set of
addresses of the children of each Person of the database. We know the collection named
Persons contains all the persons of the database. We now have to traverse two collec-
tions: Persons and Person.children. Like in SQL, the select-from operator allows us to
query more than one collection. These collections then appear in the from part. In OQL,
a collection in the from part can be derived from a previous one by following a path
that starts from it.

Example:

select c.address
from Persons p,
 p.children c

This query inspects all children of all persons. Its result is a value whose type is
bag<Address>.

6 ODMG Object Query Language
4.5.1 Predicate
Of course, the where clause can be used to define any predicate, which then serves to
select only the data matching the predicate. For example, we want to restrict the
previous result to the people living on Main Street and having at least two children.
Moreover, we are only interested in the addresses of the children who do not live in the
same city as their parents.

Example:

select c.address
from Persons p,
 p.children c
where p.address.street = "Main Street" and
 count(p.children) >= 2 and
 c.address.city != p.address.city

4.5.2 Boolean Operators
The where clauses of queries contain atomic or complex predicates. Complex predi-
cates are built by combining atomic predicates with boolean operators and, or, and not.
OQL supports special versions of and and or, namely, andthen and orelse. These two
operators enable conditional evaluation of their second operand and also dictate that
the first operand be evaluated first. Let X and Y be boolean expressions in the
following two cases:

X andthen Y

X orelse Y

In the first case, Y is only evaluated if X has already evaluated to true. In the second
case, Y is only evaluated if X has already evaluated to false. Note that you cannot intro-
duce one of the operators andthen and orelse, without at the same time introducing the
other. This is so, because the one shows up whenever an expression involving the other
is negated. For example:

not (X1 andthen X2)

is equivalent to

not X1 orelse not X2

The following is an example OQL query that exploits the andthen operator:

select p.name
from Persons p
where p.address != nil
andthen p.address.city = Paris

4.6 Undefined Values 7
It retrieves objects of type Person (or any of its subtypes) that live in Paris. The andthen
operator makes sure the predicate on address.city is only evaluated for instances in
Persons that have a not nil address.

4.5.3 Join
In the from clause, collections that are not directly related can also be declared. As in
SQL, this allows computation of joins between these collections. This example selects
the people who bear the name of a flower, assuming there exists a set of all flowers
called Flowers.

Example:

select p
from Persons p,
 Flowers f
where p.name = f.name

4.6 Undefined Values
The result of accessing a property of the nil object is UNDEFINED. UNDEFINED is a
special literal value that, within the OQL language, is a valid value for any literal or
object type. The rules for managing UNDEFINED are as follows:

• is_undefined(UNDEFINED) returns true; is_defined(UNDEFINED) returns false.
• if the predicate that is defined by the where clause of a select-from-where

returns UNDEFINED, this is handled as if the predicate returns false (see
Section 4.10.9).

• UNDEFINED is a valid value of each explicit constructing expression
(Section 4.10.5) or each implicit collection construction, that is, an implicitly
constructed collection (e.g., by select-from-where) may contain
UNDEFINED.

• UNDEFINED is a valid expression for the aggregate operation count (Section
4.10.8.4).

• Any other operation with any UNDEFINED operands results in UNDEFINED
(including the . and -> operations as well as all comparison operations).

Examples:

Let us suppose that we have three employees in the database. One lives in Paris,
another lives in Palo Alto, and the third has a nil address.

select e
from Employees e
where e.address.city = Paris

8 ODMG Object Query Language
returns a bag containing the employee living in Paris.

select e.address.city
from Employees e

returns { “Paris”, “Palo Alto”, UNDEFINED }.

select e.address.city
from Employees e
where is_defined(e.address.city)

returns a bag containing the two city names Paris and Palo Alto.

select e
from Employees e
where is_undefined(e.address.city)

returns a bag containing the employee who does not have an address.

select e
from Employees e
where not(e.address.city = Paris)

returns a bag containing the employee living in Paris. Note, the same results from the
corresponding query

select e
from Employee e
where e.address.city != Paris

4.7 Method Invoking
OQL allows us to call a method with or without parameters anywhere the result type
of the method matches the expected type in the query. The notation for calling a
method is exactly the same as for accessing an attribute or traversing a relationship, in
the case where the method has no parameter. If it has parameters, these are given
between parentheses. This flexible syntax frees the user from knowing whether the
property is stored (an attribute) or computed (a method, such as age in the following
example). But if there is a name conflict between an attribute and a method, then the
method can be called with parentheses to solve this conflict (e.g., age()). This example
returns a bag containing the age of the oldest child of all persons with name “Paul”.

Example:

select max(select c.age from p.children c)
from Persons p
where p.name = "Paul"

4.8 Polymorphism 9
Of course, a method can return a complex object or a collection, and then its call can
be embedded in a complex path expression. For instance, if oldest_child is a method
defined on the class Person that returns an object of class Person, the following example
computes the set of street names where the oldest children of Parisian people are living.

Example:

select p.oldest_child.address.street
from Persons p
where p.lives_in("Paris")

Although oldest_child is a method, we traverse it as if it were a relationship. Moreover,
lives_in is a method with one parameter.

4.8 Polymorphism
A major contribution of object orientation is the possibility of manipulating polymor-
phic collections and, thanks to the late binding mechanism, to carry out generic actions
on the elements of these collections. For instance, the set Persons contains objects of
classes Person, Employee, and Student. So far, all the queries against the Persons extent
dealt with the three possible classes of the elements of the collection.

A query is an expression whose operators operate on typed operands. A query is
correct if the types of operands match those required by the operators. In this sense,
OQL is a typed query language. This is a necessary condition for an efficient query
optimizer. When a polymorphic collection is filtered (for instance, Persons), its
elements are statically known to be of that class (for instance, Person). This means that
a property of a subclass (attribute or method) cannot be applied to such an element,
except in two important cases: late binding to a method or explicit class indication.

4.8.1 Late Binding
Give the activities of each person.

Example:

select p.activities
from Persons p

where activities is a method that has three incarnations. Depending on the kind of
person of the current p, the right incarnation is called. If p is an Employee, OQL calls
the operation activities defined on this object, or else if p is a Student, OQL calls the
operation activities of the type Student, or else p is a Person and OQL calls the method
activities of the type Person.

10 ODMG Object Query Language
4.8.2 Class Indicator
To go down the class hierarchy, a user may explicitly declare the class of an object that
cannot be inferred statically. The evaluator then has to check at runtime that this object
actually belongs to the indicated class (or one of its subclasses). For example,
assuming we know that only Students spend their time in following a course of study,
we can select those Persons and get their grade. We explicitly indicate in the query that
these Persons are of class Student:

Example:

select ((Student)p). grade
from Persons p
where "course of study" in p.activities

4.9 Operator Composition
OQL is a purely functional language. All operators can be composed freely as long as
the type system is respected. This is why the language is so simple and its manual so
short. This philosophy is different from SQL, which is an adhoc language whose
composition rules are not orthogonal. Adopting a complete orthogonality allows OQL
to not restrict the power of expression and makes the language easier to learn without
losing the SQL syntax for the simplest queries. However, when very specific SQL
syntax does not enter in a pure functional category, OQL accepts these SQL peculiar-
ities as possible syntactical variations. This is explained more specifically in Section
4.11.

Among the operators offered by OQL but not yet introduced, we can mention the set
operators (union, intersect, except), the universal (for all) and existential quantifiers
(exists), the sort and group by operators, and the aggregation operators (count, sum, min,
max, and avg).

To illustrate this free composition of operators, let us write a rather complex query. We
want to know the name of the street where employees live and have the smallest salary
on average, compared to employees living in other streets. We proceed by steps and
then do it as one query. We use the OQL define instruction to evaluate temporary
results.

Example:

1. Build the extent of class Employee (assuming that it is not supported directly
by the schema and that in this database only objects of class Employee have
“has a job” in their activities field):
define Employees() as
 select (Employee) p from Persons p
 where "has a job" in p.activities

4.10 Language Definition 11
2. Group the employees by street and compute the average salary in each street:
define salary_map() as
 select street, average_salary:avg(select x.e.salary from partition x)
 from Employees() e
 group by street: e.address.street

The result is of type bag<struct(street: string, average_salary:float)>. The group by
operator splits the employees into partitions, according to the criterion (the
name of the street where this person lives). The select clause computes, in
each partition, the average of the salaries of the employees belonging to the
partition.

3. Sort this set by salary:
define sorted_salary_map() as
 select s from salary_map() s order by s.average_salary

The result is now of type list<struct(street: string, average_salary:float)>.

4. Now get the smallest salary (the first in the list) and take the corresponding
street name. This is the final result.
first(sorted_salary_map()).street

Example as a single query:

first(select street, average_salary: avg(select e.salary from partition)
 from (select (Employee) p from Persons p
 where "has a job" in p.activities) as e
 group by street : e.address.street
 order by average_salary).street

4.10 Language Definition
OQL is an expression language. A query expression is built from typed operands
composed recursively by operators. We will use the term expression to designate a
valid query in this section. An expression returns a result that can be an object or a
literal.

OQL is a typed language. This means that each query expression has a type. This type
can be derived from the structure of the query expression, the schema type declara-
tions, and the type of the named objects and literals. Thus, queries can be parsed at
compile time and type checked against the schema for correctness.

For each query expression, we give the rules that allow to (1) check for type correct-
ness and (2) deduct the type of the expression from the type of the subexpressions.

For collections, we need the following definition: Types t1, t2,...,tn are compatible if
elements of these types can be put in the same collection as defined in the object model
section.

12 ODMG Object Query Language
Compatibility is recursively defined as follows:

1. t is compatible with t.

2. If t is compatible with t', then
set(t) is compatible with set(t')
bag(t) is compatible with bag(t')
list(t) is compatible with list(t')
array(t) is compatible with array(t')

3. If there exist t such that t is a supertype of t1 and t2, then t1 and t2 are compatible.

This means in particular that

• literal types are not compatible with object types.
• atomic literal types are compatible only if they are the same.
• structured literal types are compatible only if they have a common ancestor.
• collections literal types are compatible if they are of the same collection and

the types of their members are compatible.
• atomic object types are compatible only if they have a common ancestor.
• collections object types are compatible if they are of the same collection and

the types of their members are compatible.

Note that if t1, t2,...,tn are compatible, then there exists a unique t such that:

1. t > ti for all i's

2. For all t' such that t'!=t and t' > ti for all i's, t' > t

This t is denoted lub(t1, t2,...,tn).

The examples are based on the schema described in Chapter 3.

4.10.1 Queries
A query is a query expression with no bound variables.

4.10.2 Named Query Definition
If id is an identifier, e is an OQL expression, and x1, x2,...,xn are free variables in the
expression e, and t1, t2,...,tn are the corresponding types of the formal parameters x1,
x2,...,xn, then the expression

define [query] id(t1 x1, t2 x2,...,tn xn) as e(x1, x2,...,xn)

has the following semantics: This records the definition of the function with name id
in the database schema.

id cannot be a named object, a method name, a function name, or a class name in that
schema; otherwise there is an error.

4.10 Language Definition 13
Once the definition has been made, each time we compile or evaluate a query and
encounter a function expression if it cannot be directly evaluated or bound to a function
or method, the compiler/interpreter replaces id by the expression e. Thus, this acts as a
view mechanism.

Query definitions are persistent, i.e., they remain active until overridden (by a new
definition with the same name) or deleted, by a command of the form that is

undefine [query] id

Query definitions cannot be overloaded, that is, if there is a definition of id with n
parameters and we redefined id with p parameters, p different from n, this is still inter-
preted as a new definition of id and overrides the previous definition.

If the definition of a named query does not have parameters, the parentheses are
optional when it is used.

Example:

define age(string x) as
select p.age

from Persons p

where p.name = x

define smiths() as
select p

from Persons p

where p.name = "Smith"

4.10.3 Namescopes
In some language bindings, classes are uniquely identified by namescopes (e.g., a class
in Java usually resides in a package and a class in C++ can belong to a name space). It
is sometimes necessary for an OQL query to refer to the class of an object. With name-
scopes, the class name alone is not adequate to specify the full name of the class. The
same class name may reside in two different namescopes; there also needs to be a
means of referring to these different classes that have the same name.

The import statement is used to establish a name for a class in a query. The import
statement has one of the following two forms:

import namescope.classname;

or

import namescope.classname as alternate_classname;

The namescope is a sequence of identifiers separated by ‘.’.

14 ODMG Object Query Language
The first form of the import statement allows classname to be used as the name of a class
in a query, even though its full name includes its namescope. The second form of the
import statement is used to provide an alternative class name to be used as the name of
the class identified by namescope and classname. This second form is necessary when
classname is not unique (it exists as the name of a class in two or more namescopes) and
the classes with the same name are used in a single query.

Example:

import sample.university.database.Professor as PersistentProfessor;
select ((PersistentProfessor)e).rank
from employees e
where e.id > 10000 ;

4.10.4 Elementary Expressions

4.10.4.1 Atomic Literals

If l is an atomic literal, then l is an expression whose value is the literal itself. Literals
have the usual syntax:

• Object literal: nil
• Boolean literal: false, true
• Long literal: sequence of digits, for example, 27
• Double literal: mantissa/exponent. The exponent is optional, for example,

3.14 or 314.16e-2
• Character literal: character between single quotes, for example, 'z'
• String literal: character string between double quotes, for example, "a string"

• Date literal: the keyword date followed by a single-quoted string of the form
year-month-day, for example, date ‘1997-11-07’

• Time literal: the keyword time followed by a single-quoted string of the form
hour:minutes:seconds, for example, time ‘14:23:05.3’

• Timestamp literal: the keyword timestamp followed by a single quoted string
comprised of a date and a time, for example, timestamp ‘1997-11-07
14:23:05.3’

• Enum (enumeration) literal: is an identifier determining one value out of the
corresponding enumeration type

4.10.4.2 Named Objects

If e is an object name, then e is an expression. It returns the entity attached to the name.
The type of e is the type of the named object as declared in the database schema.

Example:

Students

4.10 Language Definition 15
This query returns the set of students. We have assumed here that there exists a name
Students corresponding to the extent of objects of the class Student.

4.10.4.3 Iterator Variable

If x is a variable declared in a from part of a select-from-where, then x is an expression
whose value is the current element of the iteration over the corresponding collection.

If x is declared in the from part of a select-from-where expression by a statement of the
form

e as x

or

e x

or

x in e,

where e is of type collection(t), then x is of type t.

4.10.4.4 Named Query

If define q(t1 x1, t2 x2,...,tn xn) as e(x1, x2,...,xn) is a query definition expression where e is
an expression of type t with free variables x1, x2,...,xn, then q(x1, x2,...,xn) is an expression
of type t, whereby the types of the actual parameters yi are subtypes of the types ti of
its corresponding formal parameters xi (for 1 <= i <= n).

Example:

 smiths()

This query returns the set of persons with name "Smith". It refers to the query defini-
tion expression declared in Section 4.10.2.

4.10.5 Construction Expressions

4.10.5.1 Constructing Objects

If t is a type name, p1, p2,...,pn are properties of this type with respective types t1, t2,...,tn,
if e1, e2,...,en are expressions of type t'1, t'2,...,t'n, where t'i is a subtype of ti, for i = 1,...,n,
then t(p1: e1, p2: e2,...,pn: en) is an expression of type t.

This returns a newly created object of type t whose properties p1, p2, . . . ,pn are initial-
ized with the expressions e1, e2,...,en.

16 ODMG Object Query Language
If t is a type name of a collection and e is a collection literal, then t(e) is a collection
object. The type of e must be t.

Examples:

Employee (name: "Peter", boss: Chairman)

This creates an Employee object.

vectint (set(1,3,10))

This creates a set object (see the definition of vectint in Section 4.4.1).

4.10.5.2 Constructing Structures

If p1, p2,...,pn are property names, if e1, e2,...,en are expressions with respective types t1,
t2,...,tn, then struct(p1: e1, p2: e2,...,pn: en) is an expression of type struct(p1: t1, p2:t2,...,pn: tn).
It returns the structure taking values e1, e2,...,en on the properties p1, p2,...,pn.

Note that this dynamically creates an instance of the type struct(p1: t1, p2: t2,...,pn: tn) if ti
is the type of ei.

Example:

struct(name: "Peter", age: 25);

This returns a structure with two attributes, name and age, taking respective values Peter
and 25.

See also abbreviated syntax for some contexts in Section 4.11.1.

4.10.5.3 Constructing Sets

If e1, e2,...,en are expressions of compatible types t1, t2,...,tn, then set(e1, e2,...,en) is an
expression of type set(t), where t = lub(t1, t2,...,tn). It returns the set containing the
elements e1, e2,...,en. It creates a set instance.

Example:

set(1,2,3)

This returns a set consisting of the three elements 1, 2, and 3.

4.10.5.4 Constructing Lists

If e1, e2,...,en are expressions of compatible types t1, t2,...,tn, then list(e1, e2,...,en) is an
expression of type list(t), where t = lub(t1, t2,...,tn). They return the list having elements
e1, e2,...,en. They create a list instance.

If min, max are two expressions of integer or character types, such that min < max, then
list(min..max) is an expression of value: list(min, min+1,...max-1, max).

4.10 Language Definition 17
The type of list(min..max) is list(integer) or list (char), depending on the type of min.

Example:

list(1,2,2,3)

This returns a list of four elements.

Example:

 list(3..5)

This returns the list (3,4,5).

4.10.5.5 Constructing Bags

If e1, e2,...,en are expressions of compatible types t1, t2,...,tn, then bag(e1, e2,...,en) is an
expression of type bag(t), where t = lub(t1, t2,...,tn). It returns the bag having elements e1,
e2,...,en. It creates a bag instance.

Example:

bag(1,1,2,3,3)

This returns a bag of five elements.

4.10.5.6 Constructing Arrays

If e1, e2,...,en are expressions of compatible types t1, t2,...,tn, then array(e1, e2,...,en) is an
expression of type array(t), where t = lub(t1, t2,...,tn). It returns an array having elements
e1, e2,...,en. It creates an array instance.

Example:

array(3,4,2,1,1)

This returns an array of five elements.

4.10.6 Atomic Type Expressions

4.10.6.1 Unary Expressions

If e is an expression and <op> is a unary operation valid for the type of e, then <op> e
is an expression. It returns the result of applying <op> to e.

Arithmetic unary operators: +, -, abs

Boolean unary operator: not

Example:

not true

This returns false.

18 ODMG Object Query Language
If <op> is +, -, or abs, and if e is of type integer or float, then <op>e is of type e.

If e is of type boolean, then not e is of type boolean.

4.10.6.2 Binary Expressions

If e1 and e2 are expressions and <op> is a binary operation, then e1<op>e2 is an expres-
sion. It returns the result of applying <op> to e1 and e2.

Arithmetic integer binary operators: +, -, *, /, mod (modulo)

Floating-point binary operators: +, -, *, /

Relational binary operators: =, !=, <, <=, >, >=

These operators are defined on all atomic types.
Boolean binary operators: andthen, and, orelse, or

Example:

count(Students) - count(TA)

This returns the difference between the number of students and the number of TAs.

If <op> is +, -, * or /, and e1 and e2 are of type integer or float, then e1 <op> e2 is of type
float if e1 or e2 is of type float and integer otherwise.

If <op> is =, !=, <, <=, >, or >=, and e1 and e2 are of compatible types (here types integer
and float are considered as compatible), then e1 <op> e2 is of type boolean.

If <op> is and or or, and e1 and e2 are of type boolean, then e1 <op> e2 is of type boolean.

Because OQL is a declarative query language, its semantics allows for a reordering of
expression for the purpose of optimization. Boolean expressions are evaluated in an
order that was not necessarily the one specified by the user but the one chosen by the
query optimizer. This introduces some degree of nondeterminism in the semantics of
a boolean expression:

1. The evaluation of a boolean expression stops as soon as we know the result
(i.e., when evaluating an and clause, we stop as soon as the result is false, and
when evaluating an or clause, we stop as soon as the result is true).

2. Some clauses can generate a runtime error, and depending on their order in
evaluation, they will or will not be evaluated.

4.10.6.3 String Expressions

If s1 and s2 are expressions of type string, then s1 || s2 and s1 + s2 are equivalent expres-
sions of type string whose value is the concatenation of the two strings.

4.10 Language Definition 19
If c is an expression of type character, and s an expression of type string, then c in s is an
expression of type boolean whose value is true if the character belongs to the string, else
false.

If s is an expression of type string, and i is an expression of type integer, then s[i] is an
expression of type character whose value is the i + 1th character of the string.

If s is an expression of type string, and low and up are expressions of type integer, then
s[low:up] is an expression of type string whose value is the substring of s from the
low + 1th character up to the up + 1th character.

If s is an expression of type string, and pattern is a string literal that may include the
wildcard characters “?” or “_”, meaning any character, and “*” or “%”, meaning any
substring including an empty substring, then s like pattern is an expression of type
boolean whose value is true if s matches the pattern, else false.

 Example:

 'a nice string' like '%nice%str_ng' is true

The backslash character '\' can be used to escape any character, so that they can be
treated as normal characters in a string. This, for example, can be used to embed the
string delimiter character within a string.

4.10.7 Object Expressions

4.10.7.1 Comparison of Objects

If e1 and e2 are expressions that denote objects of compatible object types (objects with
identity), then e1 = e2 and e1 != e2 are expressions that return a boolean. If either one of
e1 or e2 are UNDEFINED, both e1 = e2 and e1 != e2 return UNDEFINED. The second
expression is equivalent to not(e1 = e2). Likewise, e1 = e2 is true if they designate the
same object.

Example:

If Doe is a named object that is the only element of the named set Students with the
attribute name equal to “Doe”, then

Doe = element(select s from Students s where s.name = "Doe")

is true.

20 ODMG Object Query Language
4.10.7.2 Comparison of Literals

If e1 and e2 are expressions that denote literals of the compatible literal types (objects
without identity), then e1 = e2 and e1 != e2 are expressions that return a boolean. If either
one of e1 or e2 is UNDEFINED, both e1 = e2 and e1 != e2 return UNDEFINED. The second
expression is equivalent to not(e1 = e2). Likewise, e1 = e2 is true if the value e1 is equal to
the value e2.

The equality of literals is computed in the following way:

• If they are struct, they must have the same structure and each of the
attributes must be equal.

• If they are sets, they must contain the same set of elements.
• If they are bags, they must contain the same set of elements and each

element must have the same number of occurrences.
• If they are list or array, they must contain the same set of elements in the

same order.

4.10.7.3 Extracting an Attribute or Traversing a Relationship from an Object

If e is an expression of a type (literal or object) having an attribute or a relationship p
of type t, then e.p and e->p are expressions of type t. These are alternate forms of syntax
to extract property p of an object e.

If e happens to designate a deleted or a nonexisting object, that is, nil, the access to an
attribute or to a relationship will return UNDEFINED as described in Section 4.6.

4.10.7.4 Applying an Operation to an Object

If e is an expression of a type having a method f without parameters and returning a
result of type t, then e->f and e.f are expressions of type t. These are alternate forms of
syntax to apply an operation on an object. The value of the expression is the one
returned by the operation or else the object nil, if the operation returns nothing.

If there is a name conflict between an attribute f and the instance method f, the method
f can be called with parentheses, that is, e->f() and e.f() are also expressions of type t.

Example:

jones->number_of_students

This applies the operation number_of_students to jones.

If e happens to designate a deleted or a nonexisting object, that is, nil, the use of a
method on it will return UNDEFINED as described in Section 4.6.

4.10 Language Definition 21
4.10.7.5 Applying an Operation with Parameters to an Object

If e is an expression of an object type having a method f with parameters of type t1,
t2,...,tn and returning a result of type t, if e1, e2,...,en are expressions of type t’1, t’2,...,t’n,
where t’i is a subtype of ti for i = 1,...,n, and if none of the expressions ei is UNDEFINED,
then e->f(e1, e2,...,en) and e.f(e1, e2,...,en) are expressions of type t that apply operation f
with parameters e1, e2,...,en to object e. The value of the expression is the one returned
by the operation or else the object nil, if the operation returns nothing. If any one of the
expressions ei is UNDEFINED, f is not executed, and the value of the expressions e->f(e1
, e2,...,en) and e.f(e1 , e2,...,en) is UNDEFINED.

If e happens to designate a deleted or a nonexisting object, that is, nil, an attempt to
apply an operation will return UNDEFINED as described in Section 4.6.

Example:

Doe->apply_course("Math", Turing)->number

This query calls the operation apply_course on class Student for the object Doe. It passes
two parameters, a string and an object of class Professor. The operation returns an
object of type Course, and the query returns the number of this course.

4.10.8 Collection Expressions

4.10.8.1 Universal Quantification

If x is a variable name, e1 and e2 are expressions, e1 denotes a collection, and e2 is an
expression of type boolean, then for all x in e1: e2 is an expression of type boolean. It
returns true if all the elements of collection e1 satisfy e2; it returns false if any element
of e1 does not satisfy e2, and it returns UNDEFINED otherwise.

Example:

for all x in Students: x.student_id > 0

This returns true if all the objects in the Students set have a positive value for their
student_id attribute.

4.10.8.2 Existential Quantification

If x is a variable name, e1 and e2 are expressions, e1 denotes a collection, and e2 is an
expression of type boolean, then exists x in e1: e2 is an expression of type boolean. It
returns true if there is at least one element of collection e1 that satisfies e2; it returns false
if no element of collection e1 satisfies e2; and it returns UNDEFINED otherwise.

Example:

exists x in Doe.takes: x.taught_by.name = "Turing"

This returns true if at least one course Doe takes is taught by someone named Turing.

22 ODMG Object Query Language
If e is a collection expression, then exists(e) and unique(e) are expressions that return a
boolean value. The first one returns true if there exists at least one element in the collec-
tion, while the second one returns true if there exists only one element in the collection.

Note that these operators accept the SQL syntax for nested queries like

select ... from col where exists (select ... from col1 where predicate)

The nested query returns a bag to which the operator exists is applied. This is of course
the task of an optimizer to recognize that it is useless to compute effectively the inter-
mediate bag result.

4.10.8.3 Membership Testing

If e1 and e2 are expressions, e2 is a collection, and e1 is an object or a literal having the
same type or a subtype as the elements of e2, then e1 in e2 is an expression of type
boolean. It returns true if element e1 is not UNDEFINED and belongs to collection e2, it
returns false if e1 is not UNDEFINED and does not belong to collection e2, and it returns
UNDEFINED if e1 is UNDEFINED.

Example:

Doe in Students

This returns true.

Doe in TA

This returns true if Doe is a teaching assistant.

4.10.8.4 Aggregate Operators

If e is an expression that denotes a collection, if <op> is an operator from {min, max,
count, sum, avg}, then <op>(e) is an expression.

Example:

max (select salary from Professors)

This returns the maximum salary of the professors.

If e is of type collection(t), where t is integer or float, then <op>(e), where <op> is an
aggregate operator different from count, is an expression of type t. If any of the
elements in e is UNDEFINED, then <op>(e) returns UNDEFINED.

If e is of type collection(t), then count(e) is an expression of type integer. UNDEFINED
elements, if any, are counted by operator count.

Example:

count({"Paris", "Palo Alto", UNDEFINED})

This returns 3.

4.10 Language Definition 23
4.10.9 Select Expression

4.10.9.1 Select-From-Where

The general form of a select-from-where expression is as follows:

select [distinct] f(x1, x2,...,xn, xn+1, xn+2,...,xn+p)
from x1 in e1(xn+1, xn+2,...,xn+p)

x2 in e2(x1, xn+1, xn+2,...,xn+p)
x3 in e3(x1, x2, xn+1, xn+2,...,xn+p)
...
xn in en(x1, x2,...,xn-1, xn+1, xn+2,...,xn+p)

[where p(x1, x2,...,xn, xn+1, xn+2,...,xn+p)]

xn+1, xn+2,...,xn+p are free variables that have to be bound to evaluate the query. The ei’s
have to be of type collection, p has to be of type boolean, and the fi’s have to be of a sort-
able type, that is, an atomic type. The result of the query will be a collection of t, where
t is the type of the result of f.

Assuming xn+1, xn+2,...,xn+p are bound to Xn+1, Xn+2,...,Xn+p, the query is evaluated as
follows:

1. The result of the from clause is a bag of elements of the type
struct(x1: X1, x2: X2,...,xn:Xn) containing the Cartesian product, where

X1 ranges over the collection bagof(e1(Xn+1, Xn+2,...,Xn+p))
X2 ranges over the collection bagof(e2(X1, Xn+1, Xn+2,...,Xn+p))
X3 ranges over the collection bagof(e3(X1, X2, Xn+1, Xn+2,...,Xn+p))
...
Xn ranges over the collection bagof(en(X1, X2,...,Xn-1, Xn+1, Xn+2,...,Xn+p))

where bagof(C) is defined as follows, for a collection C:
if C is a bag: C
if C is a list: the bag consisting of all the elements of C
if C is a set: the bag consisting of all the elements of C

2. Filter the result of the from clause by retaining only those tuples (X1, X2,...,Xn)
where the predicate p(X1, X2,...,Xn-1, Xn, Xn+1, Xn+2,...,Xn+p) produces true, and reject
those tuples where the predicate produces false or UNDEFINED.

3. Apply to each one of these tuples the function

f(X1, X2,...,Xn-1, Xn, Xn+1, Xn+2,...,Xn+p).

If f is just “*”, then keep the result of step (2) as such.

4. If the keyword “distinct” is there, then eliminate the eventual duplicates and ob-
tain a set or a list without duplicates.

24 ODMG Object Query Language
Note: To summarize, the type of the result of a “select-from-where” is as follows:
• It is always a collection.
• The collection type does not depend on the types of the collections specified

in the from clause.
• The collection type depends only on the form of the query: if we use the

“distinct” keyword we get a set, otherwise we get a bag (as shown below in
Section 4.10.9.4, if the order-by is used, the collection returned will be a
list).

Example:

select couple(student: x.name, professor: z.name)
from Students as x,

x.takes as y,
y.taught_by as z

where z.rank = "full professor"

This returns a bag of objects of type couple giving student names and the names of the
full professors from whom they take classes.

Example:

select *
from Students as x,

x.takes as y,
y.taught_by as z

where z.rank = "full professor"

This returns a bag of structures, giving for each student “object” the section object
followed by the student and the full professor “object” teaching in this section:

bag< struct(x: Student, y: Section, z: Professor) >

Syntactical variations are accepted for declaring the variables in the from part, exactly
as with SQL. The as keyword may be omitted. Moreover, the variable itself can be
omitted too, and in this case, the name of the collection itself serves as a variable name
to range over it.

Example:

select couple(student: Students.name, professor: z.name)
from Students,

Students.takes y,
y.taught_by z

where z.rank = "full professor"

In a select-from-where query, the where clause can be omitted, with the meaning of a
true predicate.

4.10 Language Definition 25
4.10.9.2 Group-By Operator

If select_query is a select-from-where query, partition_attributes is a structure expres-
sion, and predicate is a boolean expression, then

select_query group by partition_attributes

is an expression and

select_query group by partition_attributes having predicate

is an expression.

The Cartesian product visited by the select operator is split into partitions. For each
element of the Cartesian product, the partition attributes are evaluated. All elements
that match the same values according to the given partition attributes belong to the
same partition. Thus, the partitioned set, after the grouping operation, is a set of struc-
tures: Each structure has the valued properties for this partition (the valued
partition_attributes), completed by a property that is conventionally called partition
and that is the bag of all elements of the Cartesian product matching this particular
valued partition.

If the partition attributes are att1: e1, att2: e2,...,attn: en, then the result of the grouping is
of type

set< struct(att1: type_of(e1), att2: type_of(e2),...,attn: type_of(en),

 partition: bag< type_of(grouped elements) >)>

The type of grouped elements is defined as follows:

If the from clause declares the variables v1 on collection col1, v2 on col2,...,vn on coln, the
grouped elements is a structure with one attribute, vk, for each collection having the
type of the elements of the corresponding collection partition:

bag< struct(v1: type_of(col1 elements),...,vn: type_of(coln elements))>

If a collection colk has no variable declared, the corresponding attribute has an internal
system name.

This partitioned set may then be filtered by the predicate of a having clause. Finally,
the result is computed by evaluating the select clause for this partitioned and filtered
set.

26 ODMG Object Query Language
The having clause can thus apply aggregate functions on partition; likewise the select
clause can refer to partition to compute the final result. Both clauses can refer also to
the partition attributes.

Example:

select *
from Employees e
group by low: salary < 1000,

 medium: salary >= 1000 and salary < 10000,
 high: salary >= 10000

This gives a set of three elements, each of which has a property called partition that
contains the bag of employees that enter in this category. So the type of the result is

set<struct(low: boolean, medium: boolean, high: boolean,
 partition: bag<struct(e: Employee)>)>

The second form enhances the first one with a having clause that enables you to filter
the result using aggregative functions that operate on each partition.

Example:

select department,
avg_salary: avg(select x.e.salary from partition x)

from Employees e
group by department: e.deptno
having avg(select x.e.salary from partition x) > 30000

This gives a set of couples: department and average of the salaries of the employees
working in this department, when this average is more than 30000. So the type of the
result is

bag<struct(department: integer, avg_salary: float)>

To compute the average salary, we could have used a shortcut notation allowed by the
scope rules defined in Section 4.10.15. The notation would be

 avg_salary: avg(select e.salary from partition)

4.10.9.3 Order-By Operator

If select_query is a select-from-where or a select-from-where-group_by query, and if
e1, e2,...,en are expressions, then

select_query order by e1, e2,...,en

4.10 Language Definition 27
is an expression. After building the Cartesian product by the from clause, and filtering
its result by retaining only those elements that satisfy the where clause, the grouping
operation is evaluated first, if there is any. Then the ordering operation is performed.
It returns a list of the selected elements sorted by the function e1, and inside each subset
yielding the same e1, sorted by e2,...,and the final sub-sub...set, sorted by en.

Example:

select p from Persons p order by p.age, p.name

This sorts the set of persons on their age, then on their name, and puts the sorted objects
into the result as a list.

Each sort expression criterion can be followed by the keyword asc or desc, specifying
respectively an ascending or descending order. The default order is that of the previous
declaration. For the first expression, the default is ascending.

Example:

select * from Persons order by age desc, name asc, department

4.10.9.4 Summary Select Expression

There are two general forms of the select expression: a select-from-where-order_by
and a select-from-where-group_by-order-by. The former is

Form I:

select [distinct] f(x1, x2,...,xn, xn+1, xn+2,...,xn+p)
from x1 in e1(xn+1, xn+2,...,xn+p)

x2 in e2(x1, xn+1, xn+2,...,xn+p)
x3 in e3(x1, x2, xn+1, xn+2,...,xn+p)
...
xn in en(x1, x2,...,xn-1, xn+1, xn+2,...,xn+p)

[where p(x1, x2,...,xn, xn+1, xn+2,...,xn+p)]
[order by f1(x1, x2,...,xn, xn+1, xn+2,...,xn+p),

f2(x1, x2,...,xn, xn+1, xn+2,...,xn+p),
...
fq(x1, x2,...,xn, xn+1, xn+2,...,xn+p)]

28 ODMG Object Query Language
while the latter is

Form II:

select [distinct] f(y1, y2,...,ym, partition)
from x1 in e1(xn+1, xn+2,...,xn+p)

x2 in e2(x1, xn+1, xn+2,...,xn+p)
x3 in e3(x1, x2, xn+1, xn+2,...,xn+p)
...
xn in en(x1, x2,...,xn-1, xn+1, xn+2,...,xn+p)

[where p(x1, x2,...,xn, xn+1, xn+2,...,xn+p)]
group by y1 : g1(x1, x2,...,xn+p),

y2 : g2(x1, x2,...,xn+p),
...
ym : gm(x1, x2,...,xn+p)

[having h(y1, y2,...,ym, partition)]
[order by f1(y1, y2,...,ym, partition),

f2(y1, y2,...,ym, partition),
...
fq(y1, y2,...,ym, partition)]

Both forms are explained below.

xn+1, xn+2,...,xn+p are free variables that have to be bound to evaluate the query. The ei’s
have to be of type collection, p has to be of type boolean, and the fi’s have to be of a sort-
able type, that is, an atomic type. The result of the query will be a collection of t, where
t is the type of the result of f.

Assuming xn+1, xn+2,...,xn+p are bound to Xn+1, Xn+2,...,Xn+p, the query is evaluated as
follows:

1. The result of the from clause is a bag of elements of the type
struct(x1: X1, x2: X2,...,xn:Xn) containing the Cartesian product, where

X1 ranges over the collection bagof(e1(Xn+1, Xn+2,...,Xn+p))
X2 ranges over the collection bagof(e2(X1, Xn+1, Xn+2,...,Xn+p))
X3 ranges over the collection bagof(e3(X1, X2, Xn+1, Xn+2,...,Xn+p))
...
Xn ranges over the collection bagof(en(X1, X2,...,Xn-1, Xn+1, Xn+2,...,Xn+p))

where bagof(C) is defined as follows, for a collection C:
if C is a bag: C
if C is a list: the bag consisting of all the elements of C
if C is a set: the bag consisting of all the elements of C

2. Filter the result of the from clause by retaining only those tuples (X1, X2, ...,Xn)
where the predicate p(X1, X2,...,Xn-1, Xn, Xn+1, Xn+2,...,Xn+p) produces true, and reject
those tuples where the predicate produces false or UNDEFINED.

4.10 Language Definition 29
3. This step (and the following one) applies to the select-from-where-group_by
expression. Split the Cartesian product into partitions as follows:

(i) evaluate attributes yi (1 <= i <= m) with the functions gi returning a value
of type Yi, and

(ii) all elements that match the same values of y1, y2,...,ym belong to the same
partition.

The result of the grouping operation is of type

set<struct(y1:Y1, y2:Y2,...,ym:Ym,
partition:bag<struct(x1:X1, x2:X2,...,xn:Xn)>)>

4. If the keyword “having” follows the grouping operation, then filter the result of
the grouping operation by retaining those struct values of the set that satisfy the
predicate h(y1, y2,...,ym, partition).

5. If the keyword “order by” appears, sort this collection using the functions f1,
f2,...,fq and transform it into a list. The order by a set of functions is performed as
follows: First sort according to function f1, then for all the elements having the
same f1 value sort them according to f2, and so on. Note that these functions have
different parameters depending on whether a “group_by” appears in the query or
not (see Form I or Form II).

6. If a “group by” operation was performed apply to each one of these tuples the
function

f(y1, y2,...,ym, partition).

Otherwise apply to each of these tuples

f(x1, x2,...,xn-1, xn, xn+1, xn+2,...,xn+p).

If f is just “*”, then keep the result of step (5) as such.

7. If the keyword “distinct” is there, then eliminate the eventual duplicates and ob-
tain a set or a list without duplicates.

4.10.10 Indexed Collection Expressions

4.10.10.1 Getting the Ith Element of an Indexed Collection

If e1 is an expression of type list(t) or array(t) and e2 is an expression of type integer, then
e1[e2] is an expression of type t. This extracts the e2 + 1 element of the indexed collection
e1. Notice that the first element has the rank 0.

Example:

list (a,b,c,d) [1]

30 ODMG Object Query Language
This returns b.

Example:

element (select x
 from Courses x

 where x.name = "Math" and x.number ="101").requires[2]

This returns the third prerequisite of Math 101.

4.10.10.2 Extracting a Subcollection of an Indexed Collection

If e1 is an expression of type list(t) (resp., array(t)), and e2 and e3 are expressions of type
integer, then e1[e2:e3] is an expression of type list(t) (resp., array(t)). This extracts the
subcollection of e1 starting at position e2 and ending at position e3.

Example:

list (a,b,c,d) [1:3]

This returns list (b,c,d).
Example:

element (select x
 from Courses x

 where x.name = "Math" and x.number = "101").requires[0:2]

This returns the list consisting of the first three prerequisites of Math 101.

4.10.10.3 Getting the First and Last Elements of an Indexed Collection

If e is an expression of type list(t) or array(t), <op> is an operator from {first, last}, then
<op>(e) is an expression of type t. This extracts the first and last element of a collection.

Example:

first(element(select x
from Courses x

where x.name = "Math" and x.number = "101").requires)

This returns the first prerequisite of Math 101.

4.10.10.4 Concatenating Two Indexed Collections

If e1 and e2 are expressions of type list(t1) and list(t2) (resp., array(t1) and array(t2)) where
t1 and t2 are compatible, then e1 + e2 is an expression of type list(lub(t1, t2)) (resp.,
array(lub(t1, t2))). This computes the concatenation of e1 and e2.

list (1,2) + list(2,3)

This query generates list (1,2,2,3).

4.10 Language Definition 31
4.10.10.5 Accessing an Element of a Dictionary from Its Key

If e1 is an expression of type dictionary(k,v) and e2 is an expression of type k, then e1[e2]
is an expression of type v. This extracts the value associated with the key e2 in the
dictionary e1.

Example:

theDict["foobar"]

returns the value that is associated with the key “foobar” in the dictionary theDict.

4.10.11 Binary Set Expressions

4.10.11.1 Union, Intersection, Difference

If e1 is an expression of type set(t1) or bag(t1) and e2 is an expression of type set(t2) or
bag(t2) where t1 and t2 are compatible types, if <op> is an operator from {union, except,
intersect}, then e1 <op> e2 is an expression of type set(lub(t1, t2)) if both expressions are
of type set, bag(lub(t1, t2))) if any of them is of type bag. This computes set theoretic
operations, union, difference, and intersection on e1 and e2, as defined in Chapter 2.

When the operand’s collection types are different (bag and set), the set is first converted
into a bag and the result is a bag.

Examples:

Student except TA

This returns the set of students who are not teaching assistants.

bag(2,2,3,3,3) union bag(2,3,3,3)

This bag expression returns bag(2,2,3,3,3,2,3,3,3).

bag(2,2,3,3,3) intersect bag(2,3,3,3)

The intersection of two bags yields a bag that contains the minimum for each of the
multiple values. So the result is bag(2,3,3,3).

bag(2,2,3,3,3) except bag(2,3,3,3)

This bag expression returns bag(2).

4.10.11.2 Inclusion

If e1 and e2 are expressions that denote sets or bags of compatible types and if <op> is
an operator from {<, <=, >, >=}, then e1 <op> e2 is an expression of type boolean.

32 ODMG Object Query Language
When the operands are different kinds of collections (bag and set), the set is first
converted into a bag.

e1 < e2 is true if e1 is included in e2 but not equal to e2

e1 <= e2 is true if e1 is included in e2

Example:

 set(1,2,3) < set(3,4,2,1) is true

4.10.12 Conversion Expressions

4.10.12.1 Extracting the Element of a Singleton

If e is an expression of type collection(t), element(e) is an expression of type t. This takes
the singleton e and returns its element. If e is not a singleton, this raises an exception.

Example:

element(select x from Professors x where x.name = "Turing")

This returns the professor whose name is Turing (if there is only one).

4.10.12.2 Turning a List into a Set

If e is an expression of type list(t), listtoset(e) is an expression of type set(t). This converts
the list into a set, by forming the set containing all the elements of the list.

Example:

listtoset (list(1,2,3,2))

This returns the set containing 1, 2, and 3.

4.10.12.3 Removing Duplicates

If e is an expression of type col(t), where col is set or bag, then distinct(e) is an expression
of type set(t) whose value is the same collection after removing the duplicated
elements. If e is an expression of type col(t), where col is either list or array, then
distinct(e) is an expression of type col(t) obtained by keeping the first occurrence for
each element of the list.

Examples:

distinct(list(1, 4, 2, 3, 2, 4, 1))

This returns list(1, 4, 2, 3).

4.10.12.4 Flattening a Collection of Collections

If e is a collection-valued expression, flatten(e) is an expression. This converts a collec-
tion of collections of t into a collection of t. So flattening operates at the first level only.

4.10 Language Definition 33
Assuming the type of e to be col1<col2<t>>, the result of flatten(e) is as follows:

• If col2 is a set (resp., a bag), the union of all col2<t> is done and the result is
set<t> (resp., bag<t>).

• If col2 is a list or an array and col1 is a list or an array, the concatenation of all
col2<t> is done following the order in col1 and the result is col2<t>, which is
thus a list or an array. Of course duplicates, if any, are maintained by this
operation.

• If col2 is a list or an array and col1 is a set (resp., a bag), the lists or arrays are
converted into sets (resp., bags), the union of all these sets (resp., bags) is
done, and the result is a set<t> (resp. bag<t>).

 Examples:

flatten(list(set(1,2,3), set(3,4,5,6), set(7)))

This returns the set containing 1,2,3,4,5,6,7.

flatten(list(list(1,2), list(1,2,3)))

This returns list(1,2,1,2,3).

flatten(set(list(1,2), list(1,2,3)))

This returns the set containing 1, 2, and 3.

4.10.12.5 Typing an Expression

If e is an expression of type t and t' is a type name, and t and t' are comparable (either
t>=t' or t<=t'), then (t')e is an expression of type t'. This expression has two impacts:

1. At compile time, it is a statement for the interpreter/compiler type checker to
notify that e should be understood as of type t'.

2. At runtime, it asserts that e is indeed of type t' (or a subtype of it) and will return
the result of e in this case, or an exception in all other cases.

This mechanism allows the user to execute queries that would otherwise be rejected as
incorrectly typed. For instance, when referring to the schema presented in Section
3.2.2, the query

select e.student_id
from employees e
where e in (select s.has_TA from sections s)

will be rejected at runtime even though e is restricted in the where clause to teaching
assistants that teach a section, as the type checker has no way to check that these
instances of extent employees indeed have a student_id field.

34 ODMG Object Query Language
If we write

select ((TA) e).student_id
from employees e
where e in (select s.has_TA from sections s)

then the compile-time type checker is told via the downcast that e must be of TA type
and the query is accepted as type correct. Note that at runtime, each occurrence of e in
the select clause will be checked for its type.

4.10.13 Function and Static Method Call
If f is a function of type (t1, t2,...,tn -> t), if e1, e2,...,en are expressions of type t'1, t'2,...,t'n,
where t'i is a subtype of ti for i = 1,...,n, and none of the expressions ei is UNDEFINED,
then f() and f(e1, e2,...,en) are expressions of type t whose value is the value returned by
the function, or the object nil, when the function does not return any value. The first
form calls a function without a parameter, while the second one calls a function with
the parameters e1, e2,...,en. If in the second form any one of the parameters ei is
UNDEFINED, f is not executed, and f(e1 , e2,...,en) returns UNDEFINED.

OQL does not define in which language the body of such a function is written. This
allows one to extend the functionality of OQL without changing the language.

If f is a static method of type C with type (t1, t2,...,tn -> t), if e1, e2,...,en are expressions
of type t'1, t'2,...,t'n, where t'i is a subtype of ti for i = 1,...,n, and none of the expressions
ei is UNDEFINED, then C.f(e1, e2,...,en) is an expression of type t whose value is the
value returned by the function, or the object nil, when the function does not return any
value. If any one of the parameters ei is UNDEFINED, C.f is not executed, and C.f(e1,
e2,...,en) returns UNDEFINED. If f is a static method without any parameters, both C.f()
and C.f are valid expressions whose value is the value returned by the function. But if
f is also a valid static variable, then the programmer can solve this name conflict by
using parentheses in case the static method should be called.

4.10.14 Special Functions
OQL has two special functions, is_defined(e) and is_undefined(e), that take any expres-
sion e. The former returns false if e is UNDEFINED and true otherwise. The latter returns
true if e is UNDEFINED and false otherwise.

4.10.15 Scope Rules
The from part of a select-from-where query introduces explicit or implicit variables to
range over the filtered collections. An example of an explicit variable is

select ... from Persons p ...
while an implicit declaration would be

select ... from Persons ...

4.10 Language Definition 35
The scope of these variables spreads over all the parts of the select-from-where expres-
sion, including nested subexpressions.

The group-by part of a select-from-where-group_by query introduces the name parti-
tion along with possible explicit attribute names that characterize the partition. These
names are visible in the corresponding having, select, and possible order-by part,
including nested subexpressions within these parts. Names defined by the corre-
sponding from part are no longer visible in these parts. More formally, assume x is a
variable defined in the from clause, while y is an explicit defined partition attribute.

select f(y, partition)
from x in X
where p(x)
group byy : g(x)
havingh(y, partition)
order by o(y, partition)

Then x can be applied by the where part and the group-by part, including its nested
subexpressions, but is not visible in the select part, the having part, and the order-by
part. The group-by part defines a new scope introducing the name y and implicitly the
name partition. Those names are visible in the select part, the having part, the order-by
part, including its subexpressions.

Inside a scope, you use these variable names to construct path expressions and reach
properties (attributes and operations) when these variables denote complex objects.
For instance, in the scope of the first from clause above, you access the age of a person
by p.age.

When the variable is implicit, like in the second from clause, you directly use the name
of the collection by Persons.age.

However, when no ambiguity exists, you can use the property name directly as a
shortcut, without using the variable name to open the scope (this is made implicitly),
writing simply: age. There is no ambiguity when a property name is defined for one
and only one object denoted by a visible variable.

To summarize, a name appearing in a (nested) query is looked up as follows:

• a variable in the current scope, or
• a named query introduced by the define clause, or
• a named object, that is, an entry point in the database, or
• an attribute name or an operation name of a variable in the current scope,

when there is no ambiguity, that is, this property name belongs to only one
variable in the scope

36 ODMG Object Query Language
Example:

Assuming that in the current schema the names Persons and Cities are defined,

select scope1
from Persons,

Cities c
where exists(select scope2 from children as child)

or count (select scope3, (select scope4 from partition)
 from children p,
 scope5 v
 group by age: scope6
)

In scope1, we see these names: Persons, c, Cities, all property names of class Person and
class City as long as they are not present in both classes, and they are not called
“Persons”, “c”, or “Cities”; otherwise, they have to be explicitly disambiguated.

In scope2, we see these names: child, Persons, c, Cities, the property names of the class
City that are not properties of the class Person. No attributes of the class Person can be
accessed directly since they are ambiguous between “child” and “Persons”.

Scope3 and scope4 are the same, and we see these names: age, partition, and the same
names from scope1, except “age”, “partition”, if they exist.

In scope5, we see the name p and the same names from scope1, except “p”, if it exists.
No attributes of the class Person can be accessed directly since they are ambiguous
between “p” and “Persons”.

In scope6, we see these names: p, v, Persons, c, Cities, the property names of the class
City that are not properties of the class Person. No attribute of the class Person can be
accessed directly since they are ambiguous between “p” and “Persons”.

4.11 Syntactical Abbreviations
OQL defines an orthogonal expression language, in the sense that all operators can be
composed with each other as long as the types of the operands are correct. To achieve
this property, we have defined a functional language with simple operators such as “+”
or composite operators such as “select-from-where”, “group_by”, and “order_by”,
which always deliver a result in the same type system and thus can be recursively oper-
ated with other operations in the same query.

In order to accept the whole DML query part of SQL, as a valid syntax for OQL, we
have added adhoc constructions each time SQL introduces a syntax that cannot be
considered in the category of true operators. This section gives the list of these
constructions that we call “abbreviations,” since they are completely equivalent to a
functional OQL expression. At the same time, we give the semantics of these construc-
tions, since all operators used for this description have been previously defined.

4.11 Syntactical Abbreviations 37
4.11.1 Structure Construction
The structure constructor has been introduced in Section 4.10.5.2. An alternate syntax
is allowed in two contexts: select clause and group-by clause. In both contexts, the
SQL syntax is accepted, along with the one already defined.

select projection {, projection} ...
select ... group by projection {, projection}

where projection is one of these forms:

1. expression as identifier

2. identifier : expression

3. expression

This is an alternate syntax for

struct (identifier : expression { , identifier : expression})

If there is only one projection and syntax (3) is used in a select clause, then it is not inter-
preted as a structure construction, but rather the expression stands as is. Furthermore,
a (3) expression is only valid if it is possible to infer the name of the variable for the
corresponding attribute. This requires that the expression denote a path expression
(possibly of length one) ending by a property whose name is then chosen as the
identifier.

Example:

select p.name, salary, student_id
from Professors p, p.teaches

This query returns a bag of structures:

 bag<struct(name: string, salary: float, student_id: integer)>

Both Professor and Student classes have the attribute “name”. Therefore, it must be
disambiguated. On the contrary, only professors have salaries, and only students have
student_ids.

4.11.2 Aggregate Operators
These operators have been introduced in Section 4.10.8.4. SQL adopts a notation that
is not functional for them. So OQL accepts this syntax, too. If we define aggregate as
one of min, max, count, sum, and avg,

select count(*) from ... is equivalent to
count(select * from ...)

select aggregate(query) from ... is equivalent to
aggregate(select query from ...)

select aggregate(distinct query) from ... is equivalent to
aggregate(distinct(select query from ...))

38 ODMG Object Query Language
4.11.3 Composite Predicates
If e1 and e2 are expressions, e2 is a collection, e1 has the type of its elements, if relation
is a relational operator (=, !=, <, <=, > , >=), then e1 relation some e2 and e1 relation any e2
and e1 relation all e2 are expressions whose value is a boolean.

The two first predicates are equivalent to

exists x in e2: e1 relation x

The last predicate is equivalent to

for all x in e2: e1 relation x

Example:

10 < some list(8,15, 7, 22) is true

4.12 OQL Syntax

4.12.1 Syntax Conventions
An Extended Backus Naur Form (EBNF) is used for syntactical definitions. A rule has
the form

symbol ::= expression
where the syntax expression expression describes a set of phrases named by the nonter-
minal symbol symbol. The following notions are used for the syntax expressions:

n is a nonterminal symbol that has to appear at some place
within the grammar on the left side of a rule, all nonter-
minal symbols have to be derived to terminal symbols.

t represents the terminal symbol t,
x y represents x followed by y,
x | y or
(x | y) represents x or y,
[x] represents x or empty,
{ x } represents a possibly empty sequence of x.

4.12.2 OQL Grammar

queryProgram ::= declaration { ; declaration} [; query]
| query

declaration ::= import
| defineQuery
| undefineQuery

import ::= import qualifiedName [as identifier]

4.12 OQL Syntax 39
defineQuery ::= define [query] identifier [([parameterList])]
as query

parameterList ::= type identifier { , type identifier }

undefineQuery ::= undefine [query] identifier

qualifiedName ::= identifier { . identifier }

query ::= selectExpr
| expr

selectExpr ::= select [distinct] projectionAttributes
fromClause
[whereClause]
[groupClause]
[orderClause]

projectionAttributes ::= projectionList
| *

projectionList ::= projection { , projection }

projection ::= field
| expr [as identifier]

fromClause ::= from iteratorDef { , iteratorDef }

iteratorDef ::= expr [[as] identifier]
 | identifier in expr

whereClause ::= where expr

groupClause ::= group by fieldList { havingClause }

havingClause ::= having expr

orderClause ::= order by sortCriteria

sortCriteria ::= sortCriterion { , sortCriterion }

sortCriterion ::= expr [(asc | desc)]

40 ODMG Object Query Language
expr ::= castExpr

castExpr ::= orExpr
| (type) castExpr

orExpr ::= orelseExpr { or orelseExpr }

orelseExpr ::= andExpr { orelse andExpr }

andExpr ::= quantifierExpr { and quantifierExpr }

quantifierExpr ::= andthenExpr
 | for all inClause : andthenExpr
 | exists inClause : andthenExpr

inClause ::= identifier in expr

andthenExpr ::= equalityExpr { andthen equalityExpr }

equalityExpr ::= relationalExpr
{ (= | !=) [compositePredicate] relationalExpr }

 | relationalExpr { like relationalExpr }

relationalExpr ::= additiveExpr
{ (< | <= | > | >=) [compositePredicate]
additiveExpr }

compositePredicate ::= some | any | all

additiveExpr ::= multiplicativeExpr { + multiplicativeExpr }
 | multiplicativeExpr { - multiplicativeExpr }
 | multiplicativeExpr { union multiplicativeExpr }
 | multiplicativeExpr { except multiplicativeExpr }
 | multiplicativeExpr { || multiplicativeExpr }

multiplicativeExpr ::= inExpr { * inExpr }
 | inExpr { / inExpr }
 | inExpr { mod inExpr }
 | inExpr { intersect inExpr }

inExpr ::= unaryExpr { in unaryExpr }

4.12 OQL Syntax 41
unaryExpr ::= + unaryExpr
 | - unaryExpr
 | abs unaryExpr
 | not unaryExpr
 | postfixExpr

postfixExpr ::= primaryExpr { [index] }
 | primaryExpr { (. | ->) identifier [argList] }

index ::= expr { , expr}
 | expr : expr

argList ::= ([valueList])

primaryExpr ::= conversionExpr
 | collectionExpr
 | aggregateExpr
 | undefinedExpr
 | objectConstruction
 | structConstruction
 | collectionConstruction
 | identifier [argList]
 | queryParam
 | literal
 | (query)

conversionExpr ::= listtoset (query)
 | element (query)
 | distinct (query)
 | flatten (query)

collectionExpr ::= first (query)
 | last (query)
 | unique (query)
 | exists (query)

aggregateExpr ::= sum (query)
 | min (query)
 | max (query)
 | avg (query)
 | count ((query | *))

42 ODMG Object Query Language
undefinedExpr ::= is_undefined (query)
 | is_defined (query)

objectConstruction ::= identifier (fieldList)

structConstruction ::= struct (fieldList)

fieldList ::= field { , field }

field ::= identifier : expr

collectionConstruction ::= array ([valueList])
 | set ([valueList])
 | bag ([valueList])
 | list ([valueList])
 | list (listRange)

valueList ::= expr { , expr }

listRange ::= expr .. expr

queryParam ::= $ longLiteral

type ::= [unsigned] short
 | [unsigned] long
 | long long
 | float
 | double
 | char
 | string
 | boolean
 | octet
 | enum [identifier .] identifier
 | date
 | time
 | interval
 | timestamp
 | set < type >
 | bag < type >
 | list < type >
 | array < type >
 | dictionary < type , type >
 | identifier

4.12 OQL Syntax 43
identifier ::= letter { letter | digit | _ }

literal ::= booleanLiteral
 | longLiteral
 | doubleLiteral
 | charLiteral
 | stringLiteral
 | dateLiteral
 | timeLiteral
 | timestampLiteral

| nil
| undefined

booleanLiteral ::= true
 | false

longLiteral ::= digit { digit }

doubleLiteral ::= digit { digit } . digit { digit }
 [(E | e) [+ | -] digit { digit }]

charLiteral ::= ' character '

stringLiteral ::= " { character } "

dateLiteral ::= date ' longLiteral - longLiteral - longLiteral '

timeLiteral ::= time ' longLiteral : longLiteral : floatLiteral '

timestampLiteral ::= timestamp ' longLiteral - longLiteral - longLiteral
 longLiteral : longLiteral : floatLiteral '

character ::= letter
 | digit
 | special-character

letter ::= A | B | ... | Z |
 a | b | ... | z

digit ::= 0 | 1 | ... | 9

special-character ::= ? | _ | * | % | \

44 ODMG Object Query Language
4.12.3 Operator Priorities
The following operators are sorted by decreasing priority. Operators on the same line
have the same priority and group left-to-right. The priority is also represented by the
above given EBNF.

() [] . ->
not abs - (unary) + (unary)
in
* / mod intersect
+ - union except ||
< > <= >= < some < any < all (etc. ... for all comparison operators)
= != like
andthen
and exists for all
orelse
or
.. :
,
(type_name) This is the cast operator.
order
having
group by
where
from
select

 Chapter 5

C++ Binding
5.1 Introduction
This chapter defines the C++ binding for ODL/OML.

ODL stands for Object Definition Language. It is the declarative portion of C++
ODL/OML. The C++ binding of ODL is expressed as a library that provides classes
and functions to implement the concepts defined in the ODMG Object Model. OML
stands for Object Manipulation Language. It is the language used for retrieving objects
from the database and modifying them. The C++ OML syntax and semantics are those
of standard C++ in the context of the standard class library.

ODL/OML specifies only the logical characteristics of objects and the operations used
to manipulate them. It does not discuss the physical storage of objects. It does not
address the clustering or memory management issues associated with the stored phys-
ical representation of objects or access structures like indices used to accelerate object
retrieval. In an ideal world, these would be transparent to the programmer. In the real
world, they are not. An additional set of constructs called physical pragmas is defined
to give the programmer some direct control over these issues, or at least to enable a
programmer to provide “hints” to the storage management subsystem provided as part
of the object data management system (ODMS) runtime. Physical pragmas exist
within the ODL and OML. They are added to object type definitions specified in ODL,
expressed as OML operations, or shown as optional arguments to operations defined
within OML. Because these pragmas are not in any sense a stand-alone language, but
rather a set of constructs added to ODL/OML to address implementation issues, they
are included within the relevant subsections of this chapter.

The chapter is organized as follows. Section 5.2 discusses the ODL. Section 5.3
discusses the OML. Section 5.4 discusses OQL—the distinguished subset of OML that
supports associative retrieval. Associative retrieval is access based on the values of the
properties of objects rather than on their IDs or names. Section 5.6 provides an
example program.

5.1.1 Language Design Principles
The programming language–specific bindings for ODL/OML are based on one basic
principle: The programmer feels that there is one language, not two separate languages
with arbitrary boundaries between them. This principle has two corollaries that are
evident in the design of the C++ binding defined in the body of this chapter:

2 ODMG C++ Binding
1. There is a single unified type system across the programming language and
the database; individual instances of these common types can be persistent
or transient.

2. The programming language–specific binding for ODL/OML respects the
syntax and semantics of the base programming language into which it is
being inserted.

5.1.2 Language Binding
The C++ binding maps the Object Model into C++ by introducing a set of classes that
can have both persistent and transient instances. These classes are informally referred
to as “persistence-capable classes” in the body of this chapter. These classes are
distinct from the normal classes defined by the C++ language, all of whose instances
are transient; that is, they don’t outlive the execution of the process in which they were
created. Where it is necessary to distinguish between these two categories of classes,
the former are called “persistence-capable classes”; the latter are referred to as “tran-
sient classes.”

The C++ to ODMS language binding approach described by this standard is based on
the smart pointer or “Ref-based” approach. For each persistence-capable class T, an
ancillary class d_Ref<T> is defined. Instances of persistence-capable classes are then
referenced using parameterized references, for example,

1. d_Ref<Professor> profP;
2. d_Ref<Department> deptRef;
3. profP−>grant_tenure();
4. deptRef = profP−>dept;

Statement (1) declares the object profP as an instance of the type d_Ref<Professor>.
Statement (2) declares deptRef as an instance of the type d_Ref<Department>. Statement
(3) invokes the grant_tenure operation defined on class Professor, on the instance of that
class referred to by profP. Statement (4) assigns the value of the dept attribute of the
professor referenced by profP to the variable deptRef.

Instances of persistence-capable classes may contain embedded members of C++
built-in types, user-defined classes, or pointers to transient data. Applications may
refer to such embedded members using C++ pointers (∗) or references (&) only during
the execution of a transaction.

5.1 Introduction 3
In this chapter, we use the following terms to describe the places where the standard is
formally considered undefined or allows for an implementor of one of the bindings to
make implementation-specific decisions with respect to implementing the standard.
The terms are

Undefined: The behavior is unspecified by the standard. Implementations
have complete freedom (can do anything or nothing), and the behavior need
not be documented by the implementor or vendor.

Implementation-defined: The behavior is specified by each implementor/
vendor. The implementor/vendor is allowed to make implementation-specific
decisions about the behavior. However, the behavior must be well defined
and fully documented and published as part of the vendor's implementation
of the standard.

Figure 5-1 shows the hierarchy of languages involved, as well as the preprocess,
compile, and link steps that generate an executable application.

5.1.3 Mapping the ODMG Object Model into C++
Although C++ provides a powerful data model that is close to the one presented in
Chapter 2, it is worth trying to explain more precisely how concepts introduced in
Chapter 2 map into concrete C++ constructs.

5.1.3.1 Object and Literal

An ODMG object type maps into a C++ class. Depending on how a C++ class is
instantiated, the result can be an ODMG object or an ODMG literal. A C++ object
embedded as a member within an enclosing class is treated as an ODMG literal. This
is explained by the fact that a block of memory is inserted into the enclosing object and
belongs entirely to it. For instance, you cannot copy the enclosing object without
getting a copy of the embedded one at the same time. In this sense, the embedded
object cannot be considered as having an identity since it acts as a literal.

5.1.3.2 Structure

The Object Model notion of a structure maps into the C++ construct struct or class
embedded in a class.

5.1.3.3 Implementation

C++ has implicit the notion of dividing a class definition into two parts: its interface
(public part) and its implementation (protected and private members and function defi-
nitions). However, in C++ only one implementation is possible for a given class.

4 ODMG C++ Binding
Figure 5-1. Language Hierarchy

Database

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

ODMS

runtime
Object
code

C++ compiler

Linker

C++ ODL
declarations

��������������������������������
��������������������������������
��������������������������������

ODMS
runtime

Executable
application

ODMS
metadata

ODL
preprocessor

User C++
source [and
header] files

with OML

Generated
C++ header

[and source]
files

5.1 Introduction 5
5.1.3.4 Collection Classes

The ODMG Object Model includes collection type generators, collection types, and
collection instances. Collection type generators are represented as template classes in
C++. Collection types are represented as collection classes, and collection instances
are represented as instances of these collection classes. To illustrate these three
categories:

template<class T> class d_Set : public d_Collection<T> { ... };
class Ship { ... };
d_Set<d_Ref<Ship> > Cunard_Line;

d_Set<T> is a collection template class. d_Set<d_Ref<Ship> > is a collection class.
Cunard_Line is a particular collection, an instance of the class d_Set<d_Ref<Ship> >.

The subtype-supertype hierarchy of collection types defined in the ODMG Object
Model is directly carried over into C++. The type d_Collection<T> is an abstract class
in C++ with no direct instances. It is instantiable only through its derived classes. The
only differences between the collection classes in the C++ binding and their counter-
parts in the Object Model are the following:

• Named operations in the Object Model are mapped to C++ function
members.

• For some operations, the C++ binding includes both the named function and
an overloaded infix operation, for example, d_Set::union_with also has the
form operator+=. The statements s1.union_with(s2) and s1 += s2 are function-
ally equivalent.

• Operations that return a boolean in the Object Model are modeled as func-
tion members that return a d_Boolean in the C++ binding.

• The create and delete operations defined in the Object Model have been
replaced with C++ constructors and destructors.

5.1.3.5 Array

C++ provides a syntax for creating and accessing a contiguous and indexable sequence
of objects. This has been chosen to map partially to the ODMG array collection. To
complement it, a d_Varray C++ class is also provided, which implements an array
whose upper bound may vary.

5.1.3.6 Relationship

Relationships are not directly supported by C++. Instead, they are supported in ODMG
by including instances of specific template classes that provide the maintenance of the
relationship.

The relation itself is implemented as a reference (one-to-one relation) or as a collection
(one-to-many relation) embedded in the object.

6 ODMG C++ Binding
5.1.3.7 Extents

The class d_Extent<T> provides an interface to the extent for a persistence-capable
class T in the C++ binding.

5.1.3.8 Keys

Key declarations are not supported by C++.

5.1.3.9 Names

An object can have multiple names. The bind operation in the Object Model is imple-
mented in C++ with the set_object_name and rename_object methods to maintain back-
ward compatibility with previous releases of the C++ binding.

5.1.4 Use of C++ Language Features

5.1.4.1 Prefix

The global names in the ODMG interface will have a prefix of d_. The intention is to
avoid name collisions with other names in the global name space. The ODMG will
keep the prefix even after C++ name spaces are generally available.

5.1.4.2 Name Spaces

The name space feature added to C++ did not have generally available implementa-
tions at the time this specification was written.

5.1.4.3 Exception Handling

When error conditions are detected, an instance of class d_Error is thrown using the
standard C++ exception mechanism. Class d_Error is derived from the class exception
defined in the C++ standard.

5.1.4.4 Preprocessor Identifier

A preprocessor identifier is defined for conditional compilation. With ODMG 3.0, the
following symbol

#define __ODMG__ 30
is defined. The value of this symbol indicates the specific ODMG release, for example,
20 (release 2.0), 21 (release 2.1), or 30 (release 3.0). The preprocessor identifier for the
original ODMG-93 release was _ _ODMG_93_ _.

5.1.4.5 Implementation Extensions

Implementations must provide the full function signatures for all the interface methods
specified in the chapter and may provide variants on these methods, with additional

5.2 C++ ODL 7
parameters. Each additional parameter must have a default value. This allows applica-
tions that do not use the additional parameters to be portable.

5.2 C++ ODL
This section defines the C++ Object Definition Language. C++ ODL provides a
description of the database schema as a set of object classes—including their attributes,
relationships, and operations—in a syntactic style that is consistent with that of the
declarative portion of a C++ program. Instances of these classes can be manipulated
through the C++ OML.

Following is an example declaring type Professor:

extern const char _professors[];
extern const char _advisor [];

class Professor : public d_Object {
public:
// properties:

d_UShort age;
d_UShort id_number;
d_String office_number;
d_String name;
d_Rel_Ref<Department, _professors> dept;
d_Rel_Set<Student, _advisor> advisees;

// operations:
void grant_tenure();
void assign_course(Course &);

private:
...

};

const char _professors [] = "professors";
const char _advisor [] = "advisor";

The syntax for a C++ ODL class declaration is identical to a C++ class declaration.
Attribute declarations map to a restricted set of C++ data member declarations. The
variables _professors and _advisor are used for establishing an association between the
two ends of a relationship.

Static data members of classes are not contained within each individual instance but
are of static storage class. Thus, static data members are not stored in the database, but
are supported for persistence-capable classes. Supertypes are specified using the

8 ODMG C++ Binding
standard C++ syntax within the class header, for example, class Professor : public
Employee. Though this specification may use public members for ease and brevity,
private and protected members are supported.

5.2.1 Attribute Declarations
Attribute declarations are syntactically identical to data member declarations within
C++. Because notions of attributes as objects are not yet defined and included in this
standard, attributes and data members are not and cannot be syntactically distin-
guished. In this standard, an attribute cannot have properties (e.g., unit of measure) and
there is no way to specialize the get_value and set_value operations defined on the type
(e.g., to raise an event when a value is changed).

Standard C++ syntax and semantics for class definitions are supported. However,
compliant implementations need not support the following datatypes within persistent
classes:

• unions
• bit fields
• references(&)

as members. Unions and bit fields pose problems when supporting heterogeneous
environments. The semantics of references is that they are initialized once at creation;
all subsequent operations are directed to the referenced object. References within
persistent objects cannot be reinitialized when brought from the database into memory
and their initialization value would, in general, not be valid across process boundaries.
A set of special classes is defined within the ODMG specification to contain references
to persistent objects.

In addition to all primitive datatypes, except those noted above, structures and class
objects can be members. There are several structured literal types that are provided.
These include

• d_String
• d_Interval
• d_Date
• d_Time
• d_Timestamp

Examples:

struct University_Address {
d_UShort PO_box;
d_String university;
d_String city;
d_String state;
d_String zip_code;

};

5.2 C++ ODL 9
class Student : public d_Object {
public:

d_String name;
d_Date birth_date;
Phone_Number dorm_phone;
University_Address address;
d_List<d_String> favorite_friends;

};

The attribute name takes a d_String as its value. The attribute dorm_phone takes a
user-defined type Phone_Number as its value. The attribute address takes a structure. The
attribute favorite_friends takes a d_List of d_String as its value. The following sections
contain descriptions of the provided literal types.

5.2.1.1 Fixed-Length Types

In addition to the C++ built-in datatypes, such as the signed, unsigned, and
floating-point numeric datatypes, the following fixed-length types will be supported
for use in defining attributes of persistence-capable classes.

Unlike the C++ built-in types, these types have the same range and interpretation on
all platforms and environments. Use of these types is recommended when developing
applications targeted for heterogeneous environments. Note that like all other global
names described in this chapter, these types will be defined within the ODMG name
space when that feature becomes available.

Any ODMG implementation that allows access to a database from applications that
have been constructed with different assumptions about the range or interpretation of

Type Name Range Description
d_Short 16 bit signed integer
d_Long 32 bit signed integer
d_UShort 16 bit unsigned integer
d_ULong 32 bit unsigned integer
d_Float 32 bit IEEE Std 754-1985

single-precision floating point
d_Double 64 bit IEEE Std 754-1985

double-precision floating point
d_Char 8 bit ASCII
d_Octet 8 bit no interpretation
d_Boolean d_True or

d_False
defines d_True (nonzero value)
and d_False (zero value)

10 ODMG C++ Binding
the C++ built-in types may require the use of the fixed-length datatypes listed above
when defining attributes of persistent objects. The behavior of the database system in
such a heterogeneous environment when the C++ built-in types are used for persistent
data attributes is undefined.

ODMG implementations will allow but not require the use of the fixed-length
datatypes when used in homogeneous environments.

For any given C++ language environment or platform, these fixed-length datatypes
may be defined as identical to a built-in C++ datatype that conforms to the range and
interpretation requirements. Since a given C++ built-in datatype may meet the require-
ments in some environments but not in others, portable application code should not
assume any correspondence or lack of correspondence between the fixed-length
datatypes and similar C++ built-in datatypes. In particular, function overloads should
not be disambiguated solely on the difference between a fixed-length datatype and a
closely corresponding C++ built-in datatype. Also, different implementations of a
virtual function should use signatures that correspond exactly to the declaration in the
base class with respect to use of fixed-length datatypes versus C++ built-in datatypes.

5.2.1.2 d_String

The following class defines a literal type to be used for string attributes. It is intended
that this class be used strictly for storing strings in the database, as opposed to being a
general string class with all the functionality of a string class normally used for tran-
sient strings in an application.

Initialization, assignment, copying, and conversion to and from C++ character strings
are supported. The comparison operators are defined on d_String to compare with either
another d_String or a C++ character string. You can also access an element in the
d_String via an index and also determine the length of the d_String.

Definition:

class d_String {
public:

d_String();
d_String(const d_String &);
d_String(const char ∗);
~d_String();

d_String & operator=(const d_String &);
d_String & operator=(const char ∗);

operator const char ∗ () const;
char & operator[](unsigned long index);
unsigned long length() const;

5.2 C++ ODL 11
friend d_Boolean operator==(const d_String &sL, const d_String &sR);
friend d_Boolean operator==(const d_String &sL, const char ∗ pR);
friend d_Boolean operator==(const char ∗ pL, const d_String &sR);
friend d_Boolean operator!= (const d_String &sL, const d_String &sR);
friend d_Boolean operator!= (const d_String &sL, const char ∗ pR);
friend d_Boolean operator!= (const char ∗ pL, const d_String &sR);
friend d_Boolean operator< (const d_String &sL, const d_String &sR);
friend d_Boolean operator< (const d_String &sL, const char ∗ pR);
friend d_Boolean operator< (const char ∗ pL, const d_String &sR);
friend d_Boolean operator<=(const d_String &sL, const d_String &sR);
friend d_Boolean operator<=(const d_String &sL, const char ∗ pR);
friend d_Boolean operator<=(const char ∗ pL, const d_String &sR);
friend d_Boolean operator> (const d_String &sL, const d_String &sR);
friend d_Boolean operator> (const d_String &sL, const char ∗ pR);
friend d_Boolean operator> (const char ∗ pL, const d_String &sR);
friend d_Boolean operator>=(const d_String &sL, const d_String &sR);
friend d_Boolean operator>=(const d_String &sL, const char ∗ pR);
friend d_Boolean operator>=(const char ∗ pL, const d_String &sR);
};

Class d_String is responsible for freeing the string that gets returned by operator
const char ∗ .

5.2.1.3 d_Interval

The d_Interval class is used to represent a duration of time. It is also used to perform
arithmetic operations on the d_Date, d_Time, and d_Timestamp classes. This class corre-
sponds to the day-time interval as defined in the SQL standard.

Initialization, assignment, arithmetic, and comparison functions are defined on the
class, as well as member functions to access the time components of its current value.

The d_Interval class accepts nonnormalized input, but normalizes the time components
when accessed. For example, the constructor would accept 28 hours as input, but then
calling the day function would return a value of 1 and the hour function would return a
value of 4. Arithmetic would work in a similar manner.
Definition:

class d_Interval {
public:

d_Interval(int day = 0, int hour = 0,int min = 0, float sec = 0.0);
d_Interval(const d_Interval &);

d_Interval & operator=(const d_Interval &);
int day() const;

12 ODMG C++ Binding
int hour() const;
int minute() const;
float second() const;
d_Boolean is_zero() const;
d_Interval & operator+=(const d_Interval &);
d_Interval & operator−=(const d_Interval &);
d_Interval & operator∗ =(int);
d_Interval & operator/=(int);
d_Interval operator−() const;

friend d_Interval operator+(const d_Interval &L, const d_Interval &R);
friend d_Interval operator−(const d_Interval &L, const d_Interval &R);
friend d_Interval operator∗ (const d_Interval &L, int R);
friend d_Interval operator∗ (int L, const d_Interval &R);
friend d_Interval operator/ (const d_Interval &L, int R);
friend d_Boolean operator==(const d_Interval &L, const d_Interval &R);
friend d_Boolean operator!= (const d_Interval &L, const d_Interval &R);
friend d_Boolean operator< (const d_Interval &L, const d_Interval &R);
friend d_Boolean operator<=(const d_Interval &L, const d_Interval &R);
friend d_Boolean operator> (const d_Interval &L, const d_Interval &R);
friend d_Boolean operator>=(const d_Interval &L, const d_Interval &R);
};

5.2.1.4 d_Date

The d_Date class stores a representation of a date consisting of a year, month, and day.
It also provides enumerations to denote weekdays and months.

Initialization, assignment, arithmetic, and comparison functions are provided. Imple-
mentations may have additional functions available to support converting to and from
the type used by the operating system to represent a date. Functions are provided to
access the components of a date. There are also functions to determine the number of
days in a month, and so on. The static function current returns the current date. The next
and previous functions advance the date to the next specified weekday.

Definition:

class d_Date {
public:

enum Weekday {
Sunday = 0, Monday = 1, Tuesday = 2, Wednesday = 3,
Thursday = 4, Friday = 5, Saturday = 6

};
enum Month {

5.2 C++ ODL 13
January = 1, February = 2, March = 3, April = 4, May = 5, June = 6,
July = 7, August = 8, September = 9, October = 10, November = 11,
December = 12

};
d_Date(); // sets to current date
d_Date(unsigned short year, unsigned short day_of_year);
d_Date(unsigned short year, unsigned short month,

unsigned short day);
d_Date(const d_Date &);
d_Date(const d_Timestamp &);

d_Date & operator=(const d_Date &);
d_Date & operator=(const d_Timestamp &);
unsigned short year() const;
unsigned short month() const;
unsigned short day() const;
unsigned short day_of_year() const;
Weekday day_of_week() const;
Month month_of_year() const;
d_Boolean is_leap_year() const;

static d_Boolean is_leap_year(unsigned short year);
static d_Date current();

d_Date & next(Weekday);
d_Date & previous(Weekday);
d_Date & operator+=(const d_Interval &);
d_Date & operator+=(int ndays);
d_Date & operator++(); // prefix ++d
d_Date operator++(int); // postfix d++
d_Date & operator−=(const d_Interval &);
d_Date & operator−=(int ndays);
d_Date & operator−− (); // prefix −−d
d_Date operator−− (int); // postfix d−−

friend d_Date operator+(const d_Date &L, const d_Interval &R);
friend d_Date operator+(const d_Interval &L, const d_Date &R);
friend d_Interval operator−(const d_Date &L, const d_Date &R);
friend d_Date operator−(const d_Date &L, const d_Interval &R);
friend d_Boolean operator==(const d_Date &L, const d_Date &R);
friend d_Boolean operator!= (const d_Date &L, const d_Date &R);
friend d_Boolean operator< (const d_Date &L, const d_Date &R);
friend d_Boolean operator<=(const d_Date &L, const d_Date &R);
friend d_Boolean operator> (const d_Date &L, const d_Date &R);
friend d_Boolean operator>=(const d_Date &L, const d_Date &R);

14 ODMG C++ Binding
d_Boolean is_between(const d_Date &, const d_Date &) const;
friend d_Boolean overlaps(const d_Date &psL, const d_Date &peL,

 const d_Date &psR, const d_Date &peR);
friend d_Boolean overlaps(const d_Timestamp &sL, const d_Timestamp &eL,

const d_Date &sR, const d_Date &eR);
friend d_Boolean overlaps(const d_Date &sL, const d_Date &eL,

const d_Timestamp &sR, const d_Timestamp &eR);
static int days_in_year(unsigned short year);

int days_in_year() const;
static int days_in_month(unsigned short yr, unsigned short month);

int days_in_month() const;
static d_Boolean is_valid_date(unsigned short year, unsigned short month,

unsigned short day);
};

If an attempt is made to set a d_Date object to an invalid value, a d_Error exception
object of kind d_Error_DateInvalid is thrown and the value of the d_Date object is unde-
fined.

The functions next, previous, operator+=, and operator−= alter the object and return a
reference to the current object. The post increment and decrement operators return a
new object by value.

The overlaps functions take two periods (start and end), each period denoted by a start
and end time, and determines whether the two time periods overlap. The is_between
function determines whether the d_Date value is within a given period.

5.2.1.5 d_Time

The d_Time class is used to denote a specific time, which is internally stored in Green-
wich Mean Time (GMT). Initialization, assignment, arithmetic, and comparison oper-
ators are defined. There are also functions to access each of the components of a time
value. Implementations may have additional functions available to support converting
to and from the type used by the operating system to represent a time.

The enumeration Time_Zone is made available to denote a specific time zone. Time
zones are numbered according to the number of hours that must be added or subtracted
from local time to get the time in Greenwich, England (GMT). Thus, the value of GMT
is 0. A Time_Zone name of GMT6 indicates a time of 6 hours greater than GMT, and
thus 6 must be subtracted from it to get GMT. Conversely, GMT_8 means that the time
is 8 hours earlier than GMT (read the underscore as a minus). A default time zone value
is maintained and is initially set to the local time zone. It is possible to change the
default time zone value as well as reset it to the local value.

5.2 C++ ODL 15
Definition:

class d_Time {
public:

enum Time_Zone {
GMT = 0, GMT12 = 12, GMT_12 = −12,
GMT1 = 1, GMT_1 = −1, GMT2 = 2, GMT_2 = −2,
GMT3 = 3, GMT_3 = −3, GMT4 = 4, GMT_4 = −4,
GMT5 = 5, GMT_5 = −5, GMT6 = 6, GMT_6 = −6,
GMT7 = 7, GMT_7 = −7, GMT8 = 8, GMT_8 = −8,
GMT9 = 9, GMT_9 = −9, GMT10 = 10, GMT_10 = −10,
GMT11 = 11, GMT_11 = −11,
USeastern = −5, UScentral = −6, USmountain = −7, USpacific = −8

};
static void set_default_Time_Zone(Time_Zone);
static void set_default_Time_Zone_to_local ();

d_Time();
d_Time(unsigned short hour,

 unsigned short minute, float sec = 0.0f);
d_Time(unsigned short hour, unsigned short minute,

float sec, short tzhour, short tzminute);
d_Time(const d_Time &);
d_Time(const d_Timestamp &);

d_Time & operator=(const d_Time &);
d_Time & operator=(const d_Timestamp &);
unsigned short hour() const;
unsigned short minute() const;
Time_Zone time_zone() const;
float second() const;
short tz_hour() const;
short tz_minute() const;

static d_Time current();
d_Time & operator+=(const d_Interval &);
d_Time & operator−=(const d_Interval &);

friend d_Time operator+(const d_Time &L, const d_Interval &R);
friend d_Time operator+(const d_Interval &L, const d_Time &R);
friend d_Interval operator−(const d_Time &L, const d_Time &R);
friend d_Time operator−(const d_Time &L, const d_Interval &R);
friend d_Boolean operator==(const d_Time &L, const d_Time &R);
friend d_Boolean operator!= (const d_Time &L, const d_Time &R);
friend d_Boolean operator< (const d_Time &L, const d_Time &R);

16 ODMG C++ Binding
friend d_Boolean operator<=(const d_Time &L, const d_Time &R);
friend d_Boolean operator> (const d_Time &L, const d_Time &R);
friend d_Boolean operator>=(const d_Time &L, const d_Time &R);
friend d_Boolean overlaps(const d_Time &psL, const d_Time &peL,

 const d_Time &psR, const d_Time &peR);
friend d_Boolean overlaps(const d_Timestamp &sL, const d_Timestamp &eL,

const d_Time &sR, const d_Time &eR);
friend d_Boolean overlaps(const d_Time &sL, const d_Time &eL,

const d_Timestamp &sR, const d_Timestamp &eR);
};

All arithmetic on d_Time is done on a modulo 24-hour basis. If an attempt is made to
set a d_Time object to an invalid value, a d_Error exception object of kind
d_Error_TimeInvalid is thrown and the value of the d_Time object is undefined.

The default d_Time constructor initializes the object to the current time. The overlaps
functions take two periods, each denoted by a start and end time, and determine
whether the two time periods overlap.

5.2.1.6 d_Timestamp

A d_Timestamp consists of both a date and time.

Definition:

class d_Timestamp {
public:

d_Timestamp(); // sets to the current date/time
d_Timestamp(unsigned short year, unsigned short month=1,

unsigned short day = 1, unsigned short hour = 0,
unsigned short minute = 0, float sec = 0.0);

d_Timestamp(const d_Date &);
d_Timestamp(const d_Date &, const d_Time &);
d_Timestamp(const d_Timestamp &);

d_Timestamp & operator=(const d_Timestamp &);
d_Timestamp & operator=(const d_Date &);
const d_Date & date() const;
const d_Time & time() const;
unsigned short year() const;
unsigned short month() const;
unsigned short day() const;
unsigned short hour() const;
unsigned short minute() const;
float second() const;
short tz_hour() const;
short tz_minute() const;

5.2 C++ ODL 17
static d_Timestamp current();
d_Timestamp & operator+=(const d_Interval &);
d_Timestamp & operator−=(const d_Interval &);

friend d_Timestamp operator+(const d_Timestamp &L, const d_Interval &R);
friend d_Timestamp operator+(const d_Interval &L, const d_Timestamp &R);
friend d_Timestamp operator−(const d_Timestamp &L, const d_Interval &R);
friend d_Interval operator−(const d_Timestamp &L, const d_Timestamp &R);
friend d_Boolean operator==(const d_Timestamp &L, const d_Timestamp &R);
friend d_Boolean operator!= (const d_Timestamp &L, const d_Timestamp &R);
friend d_Boolean operator< (const d_Timestamp &L, const d_Timestamp &R);
friend d_Boolean operator<=(const d_Timestamp &L, const d_Timestamp &R);
friend d_Boolean operator> (const d_Timestamp &L, const d_Timestamp &R);
friend d_Boolean operator>=(const d_Timestamp &L, const d_Timestamp &R);
friend d_Boolean overlaps(const d_Timestamp &sL, const d_Timestamp &eL,

 const d_Timestamp &sR, const d_Timestamp &eR);
friend d_Boolean overlaps(const d_Timestamp &sL, const d_Timestamp &eL,

 const d_Date &sR, const d_Date &eR);
friend d_Boolean overlaps(const d_Date &sL, const d_Date &eL,

const d_Timestamp &sR, const d_Timestamp &eR);
friend d_Boolean overlaps(const d_Timestamp &sL, const d_Timestamp &eL,

const d_Time &sR, const d_Time &eR);
friend d_Boolean overlaps(const d_Time &sL, const d_Time &eL,

const d_Timestamp &sR, const d_Timestamp &eR);
};

If an attempt is made to set the value of a d_Timestamp object to an invalid value, a
d_Error exception object of kind d_Error_TimestampInvalid is thrown and the value of the
d_Timestamp object is undefined.

5.2.2 Relationship Traversal Path Declarations
Relationships do not have syntactically separate definitions. Instead, the traversal
paths used to cross relationships are defined within the bodies of the definitions of each
of the two object types that serve a role in the relationship. For example, if there is a
one-to-many relationship between professors and the students they have as advisees,
then the traversal path advisees is defined within the type definition of the object type
Professor, and the traversal path advisor is defined within the type definition of the object
type Student.

18 ODMG C++ Binding
A relationship traversal path declaration is similar to an attribute declaration, but with
the following differences. Each end of a relationship has a relationship traversal path.
A traversal path declaration is an attribute declaration and must be of type

• d_Rel_Ref<T, const char ∗ > (which has the interface of d_Ref<T>)
• d_Rel_Set<T, const char ∗ > (which has the interface of d_Set<d_Ref<T> >)
• d_Rel_List<T, const char ∗ > (which has the interface of d_List<d_Ref<T> >)

for some persistent class T. The second template argument should be a variable that
contains the name of the attribute in the other class, which serves as the inverse role in
the relationship. Both classes in a relationship must have a member of one of these
types, and the members of the two classes must refer to each other. If the second
template argument has a name that does not correspond to a data member in the refer-
enced class, a d_Error exception object of kind d_Error_MemberNotFound is thrown. If
the second template argument does refer to a data member, but the data member is the
wrong type, that is, it is not of type d_Rel_Ref, d_Rel_Set, or d_Rel_List, a d_Error excep-
tion object of kind d_Error_MemberIsOfInvalidType is thrown.

Studying the relationships in the examples below will make this clear.

Examples:

extern const char _dept [], _professors [] ;
extern const char _advisor [], _advisees [] ;
extern const char _classes [], _enrolled [] ;

class Department : public d_Object {
public:

d_Rel_Set<Professor, _dept> professors;
};
class Professor : public d_Object {
public:

d_Rel_Ref<Department, _professors> dept;
d_Rel_Set<Student, _advisor> advisees;

};
class Student : public d_Object {
public:

d_Rel_Ref<Professor, _advisees> advisor;
d_Rel_Set<Course, _enrolled> classes;

};
class Course : public d_Object {
public:

d_Rel_Set<Student, _classes> students_enrolled;
};
const char _dept [] = "dept";
const char _professors [] = "professors";

5.3 C++ OML 19
const char _advisor [] = "advisor";
const char _advisees [] = "advisees";
const char _classes [] = "classes" ;
const char _enrolled [] = "students_enrolled";

The second template parameter is based on the address of the variable, not on the string
contents. Thus, a different variable is required for each role, even if the member name
happens to be the same. The string contents must match the name of the member in the
other class involved in the relationship.

The referential integrity of bidirectional relationships is automatically maintained. If a
relationship exists between two objects and one of the objects gets deleted, the rela-
tionship is considered to no longer exist and the inverse traversal path will be altered
to remove the relationship.

5.2.3 Operation Declarations
Operation declarations in C++ are syntactically identical to function member declara-
tions. For example, see grant_tenure and assign_course defined for class Professor in
Section 5.2.

5.3 C++ OML
This section describes the C++ binding for the OML. A guiding principle in the design
of C++ OML is that the syntax used to create, delete, identify, reference, get/set prop-
erty values, and invoke operations on a persistent object should be, so far as possible,
no different than that used for objects of shorter lifetimes. A single expression may
freely intermix references to persistent and transient objects.

While it is our long-term goal that nothing can be done with persistent objects that
cannot also be done with transient objects, this standard treats persistent and transient
objects slightly differently. Queries and transaction consistency apply only to persis-
tent objects.

5.3.1 Object Creation, Deletion, Modification, and References
Objects can be created, deleted, and modified. Objects are created in C++ OML using
the new operator, which is overloaded to accept additional arguments specifying the
lifetime of the object. An optional storage pragma allows the programmer to specify
how the newly allocated object is to be clustered with respect to other objects.

The static member variable d_Database::transient_memory is defined in order to allow
libraries that create objects to be used uniformly to create objects of any lifetime. This
variable may be used as the value of the database argument to operator new to create
objects of transient lifetime.

static d_Database ∗ const d_Database::transient_memory;

20 ODMG C++ Binding
The formal ODMG forms of the C++ new operator are

1. void ∗ operator new(size_t size);
2. void ∗ operator new(size_t size, const d_Ref_Any &clustering,

const char∗ typename);
3. void ∗ operator new(size_t size, d_Database ∗ database,

const char∗ typename);
These operators have d_Object scope. (1) is used for creation of transient objects
derived from d_Object. (2) and (3) create persistent objects. In (2) the user specifies that
the newly created object should be placed “near” the existing clustering object. The
exact interpretation of “near” is implementation-defined. An example interpretation
would be “on the same page if possible.” In (3) the user specifies that the newly created
object should be placed in the specified database, but no further clustering is specified.

The size argument, which appears as the first argument in each signature, is the size of
the representation of an object. It is determined by the compiler as a function of the
class of which the new object is an instance, not passed as an explicit argument by a
programmer writing in the language.

If the database does not have the schema information about a class when new is called,
a d_Error exception object of kind d_Error_DatabaseClassUndefined is thrown.

Examples:

 d_Database ∗ yourDB, ∗ myDB; // assume these get initialized properly
1. d_Ref<Schedule> temp_sched1 = new Schedule;
2. d_Ref<Professor> prof2 = new(yourDB,"Professor") Professor;
3. d_Ref<Student> student1 = new(myDB, "Student") Student;
4. d_Ref<Student> student2 = new(student1, "Student") Student;
5. d_Ref<Student> temp_student =

new(d_Database::transient_memory, "Student") Student;

Statement (1) creates a transient object temp_sched1. Statements (2)–(4) create persis-
tent objects. Statement (2) creates a new instance of class Professor in the database
yourDB. Statement (3) creates a new instance of class Student in the database myDB.
Statement (4) does the same thing, except that it specifies that the new object, student2,
should be placed close to student1. Statement (5) creates a transient object temp_student.

5.3.1.1 Object Deletion

Objects, once created, can be deleted in C++ OML using the d_Ref::delete_object
member function. Using the delete operator on a pointer to a persistent object will also
delete the object, as in standard C++ practice. Deleting an object is permanent, subject
to transaction commit. The object is removed from memory and, if it is a persistent
object, from the database. The d_Ref instance or pointer still exists in memory, but its
reference value is undefined. An attempt to access the deleted object is
implementation-defined.

5.3 C++ OML 21
Example:

d_Ref<anyType> obj_ref;
 ... // set obj_ref to refer to a persistent object
obj_ref.delete_object();

C++ requires the operand of delete to be a pointer, so the member function delete_object
was defined to delete an object with just a d_Ref<T> reference to it.

5.3.1.2 Object Modification

The state of an object is modified by updating its properties or by invoking operations
on it. Updates to persistent objects are made visible to other users of the database when
the transaction containing the modifications commits.

Persistent objects that will be modified must communicate to the runtime ODMS
process the fact that their states will change. The ODMS will then update the database
with these new states at transaction commit time. Object change is communicated by
invoking the d_Object::mark_modified member function, which is defined in Section
5.3.4 and is used as follows:

obj_ref−>mark_modified();

The mark_modified function call is included in the constructor and destructor methods
for persistence-capable classes, that is, within class d_Object. The developer should
include the call in any other methods that modify persistent objects, before the object
is actually modified.

As a convenience, the programmer may omit calls to mark_modified on objects where
classes have been compiled using an optional C++ OML preprocessor switch; the
system will automatically detect when the objects are modified. In the default case,
mark_modified calls are required, because in some ODMG implementations perfor-
mance will be better when the programmer explicitly calls mark_modified. However,
each time a persistent object is modified by a member update function provided explic-
itly by the ODMG classes, the mark_modified call is not necessary since it is done
automatically.

5.3.1.3 Object References

Objects, whether persistent or not, may refer to other objects via object references. In
C++ OML object references are instances of the template class d_Ref<T> (see Section
5.3.5). All accesses to persistent objects are made via methods defined on classes
d_Ref, d_Object, and d_Database. The dereference operator −> is used to access
members of the persistent object “addressed” by a given object reference. How an
object reference is converted to a C++ pointer to the object is implementation-defined.

22 ODMG C++ Binding
A dereference operation on an object reference always guarantees that the object
referred to is returned or a d_Error exception object of kind d_Error_RefInvalid is
thrown. The behavior of a reference is as follows. If an object reference refers to a
persistent object that exists but is not in memory when a dereference is performed, it
will be retrieved automatically from disk, mapped into memory, and returned as the
result of the dereference. If the referenced object does not exist, a d_Error exception
object of kind d_Error_RefInvalid is thrown. References to transient objects work
exactly the same (at least on the surface) as references to persistent objects.

Any object reference may be set to a null reference or cleared to indicate the reference
does not refer to an object.

The rules for when an object of one lifetime may refer to an object of another lifetime
are a straightforward extension of the C++ rules for its two forms of transient
objects—procedure coterminus and process coterminus. An object can always refer to
another object of longer lifetime. An object can only refer to an object of shorter life-
time as long as the shorter-lived object exists.

A persistent object is retrieved from disk upon activation. It is the application’s respon-
sibility to initialize the values of any of that object’s pointers to transient objects. When
a persistent object is committed, the ODMS sets its embedded d_Refs to transient
objects to the null value.

5.3.1.4 Object Names

A database application generally will begin processing by accessing one or more crit-
ical objects and proceeding from there. These objects are in some sense “root” objects,
in that they lead to interconnected webs of other objects. The ability to name an object
and retrieve it later by that name facilitates this start-up capability. Named objects are
also convenient in many other situations.

There is a single, flat namescope per database; thus, all names in a particular database
are unique. A name is not explicitly defined as an attribute of an object. The operations
for manipulating names are defined in the d_Database class in Section 5.3.8.

5.3.2 Properties

5.3.2.1 Attributes

C++ OML uses standard C++ for accessing attributes. For example, assume prof has
been initialized to reference a professor and we wish to modify its id_number:

prof−>id_number = next_id;
cout << prof−>id_number;

Modifying an attribute’s value is considered a modification to the enclosing object
instance. You must call mark_modified for the object before it is modified.

5.3 C++ OML 23
The C++ binding allows persistence-capable classes to embed instances of C++
classes, including other persistence-capable classes. However, embedded objects are
not considered “independent objects” and have no object identity of their own. Users
are not permitted to get a d_Ref to an embedded object. Just as with any attribute, modi-
fying an embedded object is considered a modification to the enclosing object instance,
and mark_modified for the enclosing object must be called before the embedded object
is modified.

5.3.2.2 Relationships

The ODL specifies which relationships exist between object classes. Creating,
traversing, and breaking relationships between instances are defined in the C++ OML.
Both to-one and to-many traversal paths are supported by the OML. The integrity of
relationships is maintained by the ODMS.

The following diagrams will show graphically the effect of adding, modifying, and
deleting relationships among classes. Each diagram is given a name to reflect the cardi-
nality and resulting effect on the relationship. The name will begin with 1-1, 1-m, or
m-m to denote the cardinality and will end in either N (no relationship), A (add a rela-
tionship), or M (modify a relationship). When a relationship is deleted, this will result
in a state of having no relationship (N). A solid line is drawn to denote the explicit
operation performed by the program, and a dashed line shows the side effect operation
performed automatically by the ODMS to maintain referential integrity.

The following template class allows you to specify a to-one relationship to a class T.

template <class T, const char ∗ Member> class d_Rel_Ref : public d_Ref<T> { };

The template d_Rel_Ref<T,M> supports the same interface as d_Ref<T>. Implementa-
tions will redefine some functions to provide support for referential integrity.

The application programmer must introduce two const char ∗ variables, one used at each
end of the relationship to refer to the other end of the relationship, thus establishing the
association of the two ends of the relationship. The variables must be initialized with
the name of the attribute at the other end of the relationship.

Assume the following 1-1 relationship exists between class A and class B:

extern const char _ra [], _rb [] ;
class A {
 d_Rel_Ref<B, _ra> rb;
};

class B {
d_Rel_Ref<A, _rb> ra;

};
const char _ra [] = "ra";

24 ODMG C++ Binding
const char _rb [] = "rb";

Note that class A and B could be the same class, as well. In each of the diagrams below,
there will be an instance of A called a or aa and an instance of B called b or bb. In the
following scenario 1-1N, there is no relationship between a and b.

Then, adding a relationship between a and b via

a.rb = &b;

results in the following:

The solid arrow indicates the operation specified by the program, and the dashed line
shows what operation gets performed automatically by the ODMS.

Assume now the previous diagram (1-1A) represents the current state of the relation-
ship between a and b. If the program executes the statement

a.rb.clear ();

the result will be no relationship, as shown in 1-1N.

Assume we have the relationship depicted in 1-1A. If we now execute

a.rb = &bb;

we obtain the following:

rb

a b

ra

1-1N: No relationship

1-1A: Add a relationship

rb

a b

ra

1-1M: Modify relationship

rb

a

bb

ra

b

ra

5.3 C++ OML 25
Notice that b.ra no longer refers to A and bb.ra is set automatically to reference a.

Whenever the operand to initialization or assignment represents a null reference, the
result will be no relationship as in 1-1N. In the case of assignment, if there had been a
relationship, it is removed. If the relationship is currently null (is_null would return
true), then doing an assignment would add a relationship, unless the assignment
operand was null as well.

If there is currently a relationship with an object, then doing the assignment will
modify the relationship as in 1-1M. If the assignment operand is null, then the existing
relationship is removed.

When an object involved in a relationship is deleted, all the relationships that the object
was involved in will be removed as well.

There are two other cardinalities to consider: one-to-many and many-to-many. With
one-to-many and many-to-many relationships, the set of operations allowed are based
upon whether the relationship is an unordered set or positional.

The following template class allows you to specify an unordered to-many relationship
with a class T:

template <class T, const char *M> class d_Rel_Set : public d_Set<d_Ref<T> > { }

The template d_Rel_Set<T,M> supports the same interface as d_Set<d_Ref<T> >. Imple-
mentations will redefine some functions in order to support referential integrity.

Assuming an unordered one-to-many set relationship between class A and class B:

extern const char _ra [], _sb [] ;

class A {
d_Rel_Set<B, _ra> sb;

};
class B {

d_Rel_Ref<A, _sb> ra;
};
const char _ra[] = "ra";
const char _sb[] = "sb";

26 ODMG C++ Binding
Assume we have the following instances a and b with no relationship.

a.sb has 3 elements, but they are referring to instances of B other than b.

Now suppose we add a relationship between a and b by executing the statement

a.sb.insert_element (&b);

This results in the following:

The b.ra traversal path gets set automatically to reference a. Conversely, if we execute
the statement

b.ra = &a;

an element would have automatically been added to a.sb to refer to b. But only one of
the two operations needs to be performed by the program; the ODMS automatically
updates the inverse traversal path.

Given the situation depicted in 1-mA, if we execute either

a.sb.remove_element (&b) or b.ra.clear ();

the result would be that the relationship between a and b would be deleted and the state
of a and b would be as depicted in 1-mN.

Now assume we have the relationship between a and b as shown in 1-mA. If we execute
the following statement:

b.ra = &aa;

sb

a b

ra

1-mN: No relationship

sb

a b

ra

1-mA: Add a relationship

5.3 C++ OML 27
this results in the following:

After the statement executes, b.ra refers to aa, and as a side effect, the element within
a.sb that had referred to b is removed and an element is added to aa.sb to refer to b.

The d_List class represents a positional collection, whereas the d_Set class is an unor-
dered collection. Likewise, the d_Rel_List<T, Member> template is used for repre-
senting relationships that are positional in nature.

template <class T, const char *M> class d_Rel_List : public d_List<d_Ref<T> > { };

The template d_Rel_List<T,M> has the same interface as d_List<d_Ref<T> >.

Assuming a positional to-many relationship between class A and class B:

extern const char _ra [] , _listB [] ;

class A {
d_Rel_List<B, _ra> listB;

};
class B {

d_Rel_Ref<A, _listB> ra;
};
const char _ra [] = "ra";
const char _listB [] = "listB";

The third relationship cardinality to consider is many-to-many. Suppose we have the
following relationship between A and B:

extern const char _sa [], _sb [] ;

class A {
d_Rel_Set<B, _sa> sb;

};

1-mM: Modify a relationship

sb

a

b

ra

sb

aa

28 ODMG C++ Binding
class B {
d_Rel_Set<A, _sb> sa;

};
const char _sa [] = "sa";
const char _sb [] = "sb";

Initially, there will be no relationship between instances a and b though a and b have
relationships with other instances.

The following statement will add a relationship between a and b:

a.sb.insert_element (&b);

This will result in the following:

In addition to an element being added to a.sb to reference b, there is an element auto-
matically added to b.sa that references a.

Executing either

a.sb.remove_element(&b) or b.sa.remove_element(&a)

would result in the relationship being removed between a and b, and the result would
be as depicted in m-mN.

Last, we consider the modification of a many-to-many relationship. Assume the prior
state is the situation depicted in m-mA, and assume that sb represents a positional rela-

m-mN: No relationship

sb

a b

sa

sb

a b

sa

m-mA: Add a relationship

5.3 C++ OML 29
tionship. The following statement will modify an existing relationship that exists
between a and b, changing a to be related to bb.

a.sb.replace_element_at(&bb, 3);

This results in the following object relationships:

The result of this operation is that the element in b.sa that referenced a is removed and
an element is added to bb.sa to reference a.

The initializations and assignments that have an argument of type
d_Rel_Set<T,Member> or d_Set<d_Ref<T> > are much more involved than the simple
diagrams above because they involve performing the corresponding operation for
every element of the set versus doing it for just one element. The remove_all function
removes every member of the relationship, also removing the back-reference for each
referenced member. If the assignment operators have an argument that represents an
empty set, the assignment will have the same effect as the remove_all function.

Below are some more examples based on the classes used throughout the chapter.

Examples:

d_Ref<Professor> p;
d_Ref<Student> Sam;
d_Ref<Department> english_dept;
// initialize p, Sam, and english_dept references
p−>dept = english_dept; // create 1:1 relationship
p−>dept.clear(); // clear the relationship
p−>advisees.insert_element(Sam); // add Sam to the set of students that are p's

 // advisees; same effect as 'Sam−>advisor = p'
p−>advisees.remove_element(Sam); // remove Sam from the set of students that

 // are p's advisees, also clears Sam−>advisor

m-mM: Modify a relationship

sb

a

b

sa

bb

sa

30 ODMG C++ Binding
5.3.3 Operations
Operations are defined in the OML as they are generally implemented in C++. Opera-
tions on transient and persistent objects behave entirely consistently with the opera-
tional context defined by standard C++. This includes all overloading, dispatching,
function call structure and invocation, member function call structure and invocation,
argument passing and resolution, error handling, and compile-time rules.

5.3.4 d_Object Class
The class d_Object is introduced and defined as follows:

Definition:

class d_Object {
public:

d_Object();
d_Object(const d_Object &);

virtual ~d_Object();
d_Object & operator=(const d_Object &);
void mark_modified(); // mark the object as modified
void ∗ operator new(size_t size);
void ∗ operator new(size_t size, const d_Ref_Any &cluster,

const char ∗ typename);
void ∗ operator new(size_t size, d_Database ∗ database,

const char ∗ typename);
void operator delete(void ∗);

virtual void d_activate();
virtual void d_deactivate();
};

This class is introduced to allow the type definer to specify when a class is capable of
having persistent as well as transient instances. Instances of classes derived from
d_Object can be either persistent or transient. A class A that is persistence-capable
would inherit from class d_Object:

class My_Class : public d_Object {...};

The delete operator can be used with a pointer to a persistent object to delete the object;
the object is removed from both the application cache and the database, which is the
same behavior as Ref<T>::delete_object.

An application needs to initialize and manage the transient members of a persistent
object as the object enters and exits the application cache. Memory may need to be
allocated and deallocated when these events occur, for example. The d_activate func-
tion is called when an object enters the application cache, and d_deactivate is called

5.3 C++ OML 31
when the object exits the application cache. Normally, C++ code uses the constructor
and destructor to perform initialization and destruction, but in an ODMG implementa-
tion the constructor gets called only when an object is first created and the destructor
is called at the point the object is deleted from the database. The following diagram
depicts the calls made throughout the lifetime of an object.

The object first gets initialized by the constructor. At the point the object exits the
application cache, the d_deactivate function gets called. When the object reenters the
application cache, d_activate gets called. This may get repeated many times, as the
object moves in and out of an application cache. Eventually, the object gets deleted, in
which case only the destructor gets called, not d_deactivate.

5.3.5 Reference Classes
Objects may refer to other objects through a smart pointer or reference called a d_Ref.
A d_Ref<T> is a reference to an instance of type T. There is also a d_Ref_Any class
defined that provides a generic reference to any type.

A d_Ref is a template class defined as follows:

Definition:

template <class T> class d_Ref {
public:

d_Ref();
d_Ref(T ∗ fromPtr);
d_Ref(const d_Ref<T> &);
d_Ref(const d_Ref_Any &);
~d_Ref();
operator d_Ref_Any() const;

d_Ref<T> & operator=(T ∗);
d_Ref<T> & operator=(const d_Ref<T>&);

Time

Application
Cache

Database
Environment

constructor

deactivate activate deactivate activate

destructor

32 ODMG C++ Binding
void clear();
T ∗ operator−>() const; // dereference the reference
T & operator∗ () const;
T ∗ ptr() const;
void delete_object(); // delete referred object from the database

// and from memory, if it is in the cache
// boolean predicates to check reference

d_Boolean operator!() const;
d_Boolean is_null() const;

// do these d_Refs and pointers refer to the same objects?
friend d_Boolean operator==(const d_Ref<T> &refL, const d_Ref<T> &refR);
friend d_Boolean operator==(const d_Ref<T> &refL, const T ∗ ptrR);
friend d_Boolean operator==(const T ∗ ptrL, const d_Ref<T> &refR);
friend d_Boolean operator==(const d_Ref<T> &L, const d_Ref_Any &R);
friend d_Boolean operator!=(const d_Ref<T> &refL, const d_Ref<T> &refR);
friend d_Boolean operator!=(const d_Ref<T> &refL, const T ∗ ptrR);
friend d_Boolean operator!=(const T ∗ ptrL, const d_Ref<T> &refR);
friend d_Boolean operator!=(const d_Ref<T> &refL, const d_Ref_Any &anyR);
};

References in many respects behave like C++ pointers but provide an additional mech-
anism that guarantees integrity in references to persistent objects. Although the syntax
for declaring a d_Ref is different than for declaring a pointer, the usage is, in most
cases, the same due to overloading; for example, d_Refs may be dereferenced with the
∗ operator, assigned with the = operator, and so on. A d_Ref to a class may be assigned
to a d_Ref to a superclass. d_Refs may be subclassed to provide specific referencing
behavior.

There is one anomaly that results from the ability to do conversions between d_Ref<T>
and d_Ref_Any. The following code will compile without error, and a d_Error exception
object of kind d_Error_TypeInvalid is thrown at runtime versus statically at compile
time. The error may be thrown at the assignment or later, when the reference is used.
Suppose that X and Y are two unrelated classes:

d_Ref<X> x;
d_Ref<Y> y(x);

The initialization of y via x will be done via a conversion to d_Ref_Any. You should
avoid such initializations in their application.

The pointer or reference returned by operator−> or operator ∗ is only valid either until
the d_Ref is deleted, the end of the outermost transaction, or until the object it points to
is deleted. The pointer returned by ptr is only valid until the end of the outermost trans-
action or until the object it points to is deleted. The value of a d_Ref after a transaction

5.3 C++ OML 33
commit or abort is undefined. If an attempt is made to dereference a null d_Ref<T>, a
d_Error exception object of kind d_Error_RefNull is thrown. Calling delete_object with a
null d_Ref is silently ignored, as it is with a pointer in C++.

The following template class allows you to specify a to-one relationship to a class T:

template <class T, const char ∗ Member> class d_Rel_Ref : public d_Ref<T> { };

The template d_Rel_Ref<T,M> supports the same interface as d_Ref<T>. Implementa-
tions will redefine some functions to provide support for referential integrity.

A class d_Ref_Any is defined to support a reference to any type. Its primary purpose is
to handle generic references and allow conversions of d_Refs in the type hierarchy. A
d_Ref_Any object can be used as an intermediary between any two types d_Ref<X> and
d_Ref<Y> where X and Y are different types. A d_Ref<T> can always be converted to
a d_Ref_Any; there is a function to perform the conversion in the d_Ref<T> template.
Each d_Ref<T> class has a constructor and assignment operator that takes a reference
to a d_Ref_Any.

The d_Ref_Any class is defined as follows:

Definition:

class d_Ref_Any {
public:

d_Ref_Any();
d_Ref_Any(const d_Ref_Any &);
d_Ref_Any(d_Object ∗);
~d_Ref_Any();

d_Ref_Any & operator=(const d_Ref_Any &);
d_Ref_Any & operator=(d_Object ∗);
void clear();
void delete_object(); // delete referred object from database

// and from memory, if it is in the cache

// boolean predicates checking to see if value is null or not
d_Boolean operator!() const;
d_Boolean is_null() const;

friend d_Boolean operator==(const d_Ref_Any &, const d_Ref_Any &);
friend d_Boolean operator==(const d_Ref_Any &, const d_Object ∗);
friend d_Boolean operator==(const d_Object ∗ , const d_Ref_Any &);
friend d_Boolean operator!=(const d_Ref_Any &, const d_Ref_Any &);
friend d_Boolean operator!=(const d_Ref_Any &, const d_Object ∗);
friend d_Boolean operator!=(const d_Object ∗ , const d_Ref_Any &);
};

34 ODMG C++ Binding
The operations defined on d_Ref<T> that are not dependent on a specific type T have
been provided in the d_Ref_Any class.

5.3.6 Collection Classes
Collection templates are provided to support the representation of a collection whose
elements are of an arbitrary type. A conforming implementation must support at least
the following subtypes of d_Collection:

• d_Set
• d_Bag
• d_List
• d_Varray
• d_Dictionary

The C++ class definitions for each of these types are defined in the subsections that
follow. Iterators are defined as a final subsection.

The following discussion uses the d_Set class in its explanation of collections, but the
description applies for all concrete classes derived from d_Collection.

Given an object of type T, the declaration

d_Set<T> s;

defines a d_Set collection whose elements are of type T. If this set is assigned to another
set of the same type, both the d_Set object itself and each of the elements of the set are
copied. The elements are copied using the copy semantics defined for the type T. A
common convention will be to have a collection that contains d_Refs to persistent
objects—for example,

d_Set<d_Ref<Professor> > faculty;

The d_Ref class has shallow copy semantics. For a d_Set<T>, if T is of type d_Ref<C>
for some persistence-capable class C, only the d_Ref objects are copied, not the C
objects that the d_Ref objects reference.

This holds in any scope; in particular, if s is declared as a member inside a class, the
set itself will be embedded inside an instance of this class. When an object of this
enclosing class is copied into another object of the same enclosing class, the embedded
set is copied, too, following the copy semantics defined above. This must be differen-
tiated from the declaration

d_Ref<d_Set<T> > ref_set;

which defines a reference to a d_Set. When such a reference is defined as a property of
a class, that means that the set itself is an independent object that lies outside an
instance of the enclosing class. Several objects may then share the same set, since

5.3 C++ OML 35
copying an object will not copy the set, but just the reference to it. These are illustrated
in Figure 5-2.

Figure 5-2. Collections, Embedded and with d_Ref

Collection elements may be of any type. Every type T that will become an element of
a given collection must support the following operations:

class T {
public:

R T

d_Ref<T>

:
:

S

T

T

T

R
R
R

d_Set<d_Ref<T> >

:
:

d_Set<T>

d_Set<Literal>

d_Ref<d_Set<d_Ref<T> > >

S
T
T
T

S

:
:

L
L
L

R S

:
: T

T

T

R
R
R

36 ODMG C++ Binding
T();
T(const T &);
~T();

T & operator=(const T &);
friend int operator==(const T&, const T&);
};

This is the complete set of functions required for defining the copy semantics for a
given type. For types requiring ordering, the following operation must also be
provided:

friend d_Boolean operator<(const T&, const T&);

Note that the C++ compiler will automatically generate a copy constructor and assign-
ment operator if the class designer does not declare one. Note that the d_Ref<T> class
supports these operations, except for operator<.

Collections of literals, including both atomic and structured literals, are defined as part
of the standard. This includes both primitive and user-defined types; for example,
d_Set<int>, d_Set<struct time_t> will be defined with the same behavior.

Figure 5-2 illustrates various types involving d_Sets, d_Refs, a literal type L (int, for
example), and a persistent class T. The d_Set object itself is represented by a box that
then refers to a set of elements of the specified type. A solid arrow is used to denote
containment of the set elements within the d_Set object. d_Refs have a dashed arrow
pointing to the referenced object of type T.

5.3.6.1 Class d_Collection

Class d_Collection is an abstract class in C++ and cannot have instances. It is derived
from d_Object, allowing instances of concrete classes derived from d_Collection to be
stand-alone persistent objects.

Definition:

template <class T> class d_Collection : public d_Object {
public:
virtual ~d_Collection();

d_Collection<T> & assign_from(const d_Collection<T> &);
friend d_Boolean operator==(const d_Collection<T> &cL,

const d_Collection<T> &cR);
friend d_Boolean operator!=(const d_Collection<T> &cL,

const d_Collection<T> &cR);
unsigned long cardinality() const;
d_Boolean is_empty() const;
d_Boolean is_ordered() const;

5.3 C++ OML 37
d_Boolean allows_duplicates() const;
d_Boolean contains_element(const T &element) const;
void insert_element(const T &elem);
void remove_element(const T &elem);
void remove_all();
void remove_all(const T &elem);
d_Iterator<T> create_iterator() const;
d_Iterator<T> begin() const;
d_Iterator<T> end() const;
T select_element(const char ∗ OQL_predicate) const;
d_Iterator<T> select(const char ∗ OQL_predicate) const;
int query(d_Collection<T> &, const char ∗ OQL_pred) const;
d_Boolean exists_element(const char∗ OQL_predicate) const;

protected:
d_Collection(const d_Collection<T> &);

d_Collection<T> & operator=(const d_Collection<T> &);
d_Collection();

};

Note that the d_Collection class provides the operation assign_from in place of operator=
because d_Collection assignment is relatively expensive. This will prevent the often
gratuitous use of assignment with collections.

The member function remove_element() removes one element that is equal to the argu-
ment from the collection. For ordered collections, this will be the element that is equal
to the value that would be first encountered if performing a forward iteration of the
collection. The remove_all() function removes all of the elements from the collection.
The remove_all(const T&) function removes all of the elements in the collection that are
equal to the supplied value.

The destructor is called for an element whenever the element is removed from the
collection. This also applies when the collection itself is assigned to or removed. If the
element type of the collection is d_Ref<T> for some class T, the destructor of d_Ref<T>
is called, but not the destructor of T.

The equality can be evaluated of two instances of any collection class derived from
d_Collection that have the same element type. When comparing an instance of d_Set to
either an instance of d_Set, d_Bag, d_List, or d_Varray, they are only equal if they have
the same cardinality and the same elements. When comparing an instance of d_Bag to
an instance of d_Bag, d_List, or d_Varray, they are equal if they have the same cardi-
nality and the same number of occurrences of each element value. The ordering of the
elements in the d_List or d_Varray does not matter; they are treated like a d_Bag. An

38 ODMG C++ Binding
instance of d_List or d_Varray is equal to another instance of d_List or d_Varray if they
have the same cardinality and the element at each position is equal.

The create_iterator function returns an iterator pointing at the first element in the collec-
tion. The function begin returns an iterator positioned at the first element of iteration.
The end function returns an iterator value that is “past the end” of iteration and is not
dereferenceable.

5.3.6.2 Class d_Set

A d_Set<T> is an unordered collection of elements of type T with no duplicates.

Definition:

template <class T> class d_Set : public d_Collection<T> {
public:

d_Set();
d_Set(const d_Set<T> &);
~d_Set();

d_Set<T> & operator=(const d_Set<T> &);
d_Set<T> & union_of(const d_Set<T> &sL, const d_Set<T> &sR);
d_Set<T> & union_with(const d_Set<T> &s2);
d_Set<T> & operator+=(const d_Set<T> &s2); // union_with
d_Set<T> create_union(const d_Set<T> &s) const;

friend d_Set<T> operator+(const d_Set<T> &s1, const d_Set<T> &s2);
d_Set<T> & intersection_of(const d_Set<T> &sL, const d_Set<T> &sR);
d_Set<T> & intersection_with(const d_Set<T> &s2);
d_Set<T> & operator∗ =(const d_Set<T> &s2); // intersection_with
d_Set<T> create_intersection(const d_Set<T> &s) const;

friend d_Set<T> operator∗ (const d_Set<T> &s1, const d_Set<T> &s2);
d_Set<T> & difference_of(const d_Set<T> &sL, const d_Set<T> &sR);
d_Set<T> & difference_with(const d_Set<T> &s2);
d_Set<T> & operator−=(const d_Set<T> &s2); // difference_with
d_Set<T> create_difference(const d_Set<T> &s) const;

friend d_Set<T> operator−(const d_Set<T> &s1, const d_Set<T> &s2);
d_Boolean is_subset_of(const d_Set<T> &s2) const;
d_Boolean is_proper_subset_of(const d_Set<T> &s2) const;
d_Boolean is_superset_of(const d_Set<T> &s2) const;
d_Boolean is_proper_superset_of(const d_Set<T> &s2) const;

};

Note that all operations defined on type d_Collection are inherited by type d_Set, for
example., insert_element, remove_element, select_element, and select.

5.3 C++ OML 39
Examples:

• creation:
d_Database db; // assume we open a database
d_Ref<Professor> Guttag; // assume we set this to a professor
d_Ref<d_Set<d_Ref<Professor> > > my_profs =

new(&db) d_Set<d_Ref<Professor> >;

• insertion:
my_profs−>insert_element(Guttag);

• removal:
my_profs−>remove_element(Guttag);

• deletion:
my_profs.delete_object();

For each of the set operations (union, intersection, and difference), there are three ways
of computing the resulting set. These will be explained using the union operation. Each
one of the union functions has two set operands and computes their union. They vary
in how the set operands are passed and how the result is returned, to support different
interface styles. The union_of function is a member function that has two arguments,
which are references to d_Set<T>. It computes the union of the two sets and places the
result in the d_Set object with which the function was called, removing the original
contents of the set. The union_with function is also a member and places its result in the
object with which the operation is invoked, removing its original contents. The differ-
ence is that union_with uses its current set contents as one of the two operands being
unioned, thus requiring only one operand passed to the member function. Both union_of
and union_with return a reference to the object with which the operation was invoked.
The union_with function has a corresponding operator+= function defined. On the other
hand, create_union creates and returns a new d_Set instance by value that contains the
union, leaving the two original sets unaltered. This function also has a corresponding
operator+ function defined.

The following template class allows you to specify an unordered to-many relationship
with a class T:

template <class T, const char *M> class d_Rel_Set : public d_Set<d_Ref<T> > { }

The template d_Rel_Set<T,M> supports the same interface as d_Set<d_Ref<T> >. Imple-
mentations will redefine some functions in order to support referential integrity.

5.3.6.3 Class d_Bag

A d_Bag<T> is an unordered collection of elements of type T that does allow for dupli-
cate values.

40 ODMG C++ Binding
Definition:

template <class T> class d_Bag : public d_Collection<T> {
public:

d_Bag();
d_Bag(const d_Bag<T> &);
~d_Bag();

d_Bag<T> & operator=(const d_Bag<T> &);
unsigned long occurrences_of(const T &element) const;
d_Bag<T> & union_of(const d_Bag<T> &bL, const d_Bag<T> &bR);
d_Bag<T> & union_with(const d_Bag<T> &b2);
d_Bag<T> & operator+=(const d_Bag<T> &b2); // union_with
d_Bag<T> create_union(const d_Bag<T> &b) const;

friend d_Bag<T> operator+(const d_Bag<T> &b1, const d_Bag<T> &b2);
d_Bag<T> & intersection_of(const d_Bag<T> &bL, const d_Bag<T> &bR);
d_Bag<T> & intersection_with(const d_Bag<T> &b2);
d_Bag<T> & operator∗ =(const d_Bag<T> &b2); // intersection_with
d_Bag<T> create_intersection(const d_Bag<T>&b) const;

friend d_Bag<T> operator∗ (const d_Bag<T> &b1, const d_Bag<T> &b2);
d_Bag<T> & difference_of(const d_Bag<T> &bL, const d_Bag<T> &bR);
d_Bag<T> & difference_with(const d_Bag<T> &b2);
d_Bag<T> & operator−=(const d_Bag<T> &b2); // difference_with
d_Bag<T> create_difference(const d_Bag<T> &b) const;

friend d_Bag<T> operator−(const d_Bag<T> &b1, const d_Bag<T> &b2);
};

The union, intersection, and difference operations are described in the section above
on the d_Set class.

5.3.6.4 Class d_List

A d_List<T> is an ordered collection of elements of type T and does allow for duplicate
values. The beginning d_List index value is 0, following the convention of C and C++.

Definition:

template <class T> class d_List : public d_Collection<T> {
public:

d_List ();
d_List(const d_List<T> &);
~d_List();

d_List<T> & operator=(const d_List<T> &);
T retrieve_first_element() const;
T retrieve_last_element() const;

5.3 C++ OML 41
void remove_first_element();
void remove_last_element();
T operator[](unsigned long position) const;
d_Boolean find_element(const T &element,

unsigned long &position) const;
T retrieve_element_at(unsigned long position) const;
void remove_element_at(unsigned long position);
void replace_element_at(const T &element,

unsigned long position);
void insert_element_first(const T &element);
void insert_element_last(const T &element);
void insert_element_after(const T & element,

unsigned long position);
void insert_element_before(const T &element,

 unsigned long position);
d_List<T> concat(const d_List<T> &listR) const;

friend d_List<T> operator+(const d_List<T> &listL, const d_List<T> &listR);
d_List<T> & append(const d_List<T> &listR);
d_List<T> & operator+=(const d_List<T> &listR);

};

The insert_element function (inherited from d_Collection <T>) inserts a new element at the
end of the list. The subscript operator (operator[]) has the same semantics as the member
function retrieve_element_at. The concat function creates a new d_List<T> that contains
copies of the elements from the original list, followed by copies of the elements from
listR. The original lists are not affected. Similarly, operator+ creates a new d_List<T> that
contains copies of the elements in listL and listR and does not change either list. The
append function and operator+= both copy elements from listR and add them after the last
element of the list. The modified list is returned as the result.

The d_Rel_List<T, Member> template is used for representing relationships that are posi-
tional in nature:

template <class T, const char *M> class d_Rel_List : public d_List<d_Ref<T> > { };

The template d_Rel_List<T,M> has the same interface as d_List<d_Ref<T> >.

5.3.6.5 Class Array

The Array type defined in Section 2.3.6 is implemented by the built-in array defined by
the C++ language. This is a single-dimension, fixed-length array.

5.3.6.6 Class d_Varray

A d_Varray<T> is a one-dimensional array of varying length containing elements of type
T. The beginning d_Varray index value is 0, following the convention of C and C++.

42 ODMG C++ Binding
Definition:

template <class T> class d_Varray : public d_Collection<T> {
public:

d_Varray();
d_Varray(unsigned long length);
d_Varray(const d_Varray<T> &);
~d_Varray();

d_Varray<T> & operator= (const d_Varray<T> &);
void resize(unsigned long length);
T operator[](unsigned long index) const;
d_Boolean find_element(const T &element,

unsigned long &index) const;
T retrieve_element_at(unsigned long index) const;
void remove_element_at(unsigned long index);
void replace_element_at(const T &element,

unsigned long index);
};

The insert_element function (inherited from d_Collection <T>) inserts a new element by
increasing the d_Varray length by one and placing the new element at this new position
in the d_Varray.

Examples:

d_Varray<d_Double> vector(1000);
vector.replace_element_at(3.14159, 97);
vector.resize(2000);

5.3.6.7 Class d_Dictionary

The d_Dictionary<K,V> class is an unordered collection of key-value pairs, with no
duplicate keys. A key-value pair is represented by an instance of d_Association<K,V>.

template <class K, class V> class d_Association
{
public:

K key;
V value;

d_Association(const K &k, const V &v) : key(k), value(v) { }
};

The d_Dictionary<K,V> inherits from class d_Collection<T> and thus supports all of its
base class operations. The insert_element, remove_element, and contains_element
operations inherited from d_Collection<T> are valid for d_Dictionary<K,V> types when
a d_Association<K,V> is specified as the argument. The contains_element function

5.3 C++ OML 43
returns true if both the key and value specified in the d_Association parameter are
contained in the dictionary.

template <class K, class V>
class d_Dictionary : public d_Collection<d_Association<K,V> > {
public:

d_Dictionary();
d_Dictionary(const d_Dictionary<K,V> &);
~d_Dictionary();

d_Dictionary<K,V> & operator=(const d_Dictionary<K,V> &);
void bind(const K&, const V&);
void unbind(const K&);
V lookup(const K&) const;
d_Boolean contains_key(const K&) const;

};

Iterating over a d_Dictionary<K,V> object will result in the iteration over a sequence of
d_Association<K,V> instances. Each get_element operation, executed on an instance of
d_Iterator<T>, returns an instance of d_Association<K,V>. If insert_element inherited
from d_Collection is called and a duplicate key is found, its value is replaced with the
new value passed to insert_element. The bind operation works the same as insert_element
except the key and value are passed separately. When remove_element inherited from
d_Collection is called, both the key and value must be equal for the element to be
removed. An exception error of d_Error_ElementNotFound is thrown if the d_Association
is not found in the dictionary. The function unbind removes the element with the
specified key.

5.3.6.8 Class d_Iterator

A template class, d_Iterator<T>, defines the generic behavior for iteration. All iterators
use a consistent protocol for sequentially returning each element from the collection
over which the iteration is defined. A template class has been used to give us type-safe
iterators, that is, iterators that are guaranteed to return an instance of the type of the
element of the collection over which the iterator is defined. Normally, an iterator is
initialized by the create_iterator method on a collection class.

The template class d_Iterator<T> is defined as follows:

template <class T> class d_Iterator {
public:

d_Iterator();
d_Iterator(const d_Iterator<T> &);
~d_Iterator();

d_Iterator<T> & operator=(const d_Iterator<T> &);

44 ODMG C++ Binding
friend d_Boolean operator== (const d_Iterator<T> &, const d_Iterator<T> &);
friend d_Boolean operator!= (const d_Iterator<T> &, const d_Iterator<T> &);

void reset();
d_Boolean not_done() const;
void advance();
d_Iterator<T> & operator++();
d_Iterator<T> operator++(int);
d_Iterator<T> & operator−−();
d_Iterator<T> operator−−(int);
T get_element() const;
T operator∗ () const;
void replace_element(const T &);
d_Boolean next(T &objRef);

};

When an iterator is constructed, it is either initialized with another iterator or set to
null. When an iterator is constructed via the create_iterator function defined in
d_Collection, the iterator is initialized to point to the first element, if there is one. Iter-
ator assignment is also supported. A reset function is provided to reinitialize the iterator
to the start of iteration for the same collection. The replace_element function can only
be used with d_List or d_Varray.

The not_done function allows you to determine whether there are any more elements in
the collection to be visited in the iteration. It returns 1 if there are more elements and
0 if iteration is complete. The advance function moves the iterator forward to the next
element in the collection. The prefix and postfix forms of the increment operator ++
have been overloaded to provide an equivalent advance operation. You can also move
backward through the collection by using the decrement operator −−. However, using
the −− decrement operator on an iterator of an unordered collection will throw a d_Error
exception object of kind d_Error_IteratorNotBackward. If an attempt is made to either
advance an iterator once it has already reached the end of a collection or move back-
ward once the first element has been reached, a d_Error exception object of kind
d_Error_IteratorExhausted is thrown. An attempt to use an iterator with a different collec-
tion than the collection it is associated with causes a d_Error exception object of kind
d_Error_IteratorDifferentCollections to be thrown.

The get_element function and operator∗ return the value of the current element. If there
is no current element, a d_Error exception object of kind d_Error_IteratorExhausted is
thrown. There would be no current element if iteration had been completed (not_done
return of 0) or if the collection had no elements.

The next function provides a facility for checking the end of iteration, advancing the
iterator, and returning the current element, if there is one. Its behavior is as follows:

5.3 C++ OML 45
template <class T> d_Boolean d_Iterator<T>::next(T &objRef)
 {

if(!not_done()) return 0; // no more elements, return false
objRef = get_element(); // assign current element into output parameter
advance(); // advance to the next element
return 1; // return true, that there is a next element

}

These operations allow for two styles of iteration, using either a while or for loop.

Example:

Given the class Student, with extent students:

1. d_Iterator<d_Ref<Student> > iter = students.create_iterator();
d_Ref<Student> s;

2. while(iter.next(s)) {
....

}

Note that calling get_element after calling next will return a different element (the next
element, if there is one). This is due to the fact that next will access the current element
and then advance the iterator before returning.

Or equivalently with a for loop:

3. d_Iterator<d_Ref<Student> > iter = students.create_iterator();
4. for(; iter.not_done(); ++iter) {
5. d_Ref<Student> s = iter.get_element();

....
}

Statement (1) defines an iterator iter that ranges over the collection students. Statement
(2) iterates through this collection, returning a d_Ref to a Student on each successive call
to next, binding it to the loop variable s. The body of the while statement is then
executed once for each student in the collection students. In the for loop (3), the iterator
is initialized, iteration is checked for completion, and the iterator is advanced. Inside
the for loop the get_element function can be called to get the current element.

5.3.6.9 Collections and the Standard Template Library

The C++ Standard Template Library (STL) provides an extensible set of containers,
that is, collections and algorithms that work together in a seamless way. The ODMG
C++ language binding extends STL with persistence-capable versions of STL’s
container classes, each of which may be operated on by all template algorithms in the

46 ODMG C++ Binding
same manner as transient containers. A conforming implementation must provide at
least the following persistence-capable STL container types, derived from d_Object:

• d_set
• d_multiset
• d_vector
• d_list
• d_map
• d_multimap

The names of these containers have the ODMG prefix (d_) and have interfaces that
correspond to the STL set, multiset, vector, list, map, and multimap containers,
respectively.

5.3.7 Transactions
Transaction semantics are defined in the object model explained in Chapter 2.

Transactions can be started, committed, aborted, and checkpointed. It is important to
note that all access, creation, modification, and deletion of persistent objects must be
done within a transaction.

Transactions are implemented in C++ as objects of class d_Transaction. The class
d_Transaction defines the operation for starting, committing, aborting, and check-
pointing transactions. These operations are

class d_Transaction {
public:

d_Transaction();
~d_Transaction();

void begin();
void commit();
void abort();
void checkpoint();

// Thread operations
void join();
void leave();
d_Boolean is_active() const;

static d_Transaction * current();
private:

d_Transaction(const d_Transaction &);
d_Transaction & operator=(const d_Transaction &);

};

5.3 C++ OML 47
Transactions must be explicitly created and started; they are not automatically started
on database open, upon creation of a d_Transaction object, or following a transaction
commit or abort.

The begin function starts a transaction. Calling begin multiple times on the same trans-
action object, without an intervening commit or abort, causes a d_Error exception object
of kind d_Error_TransactionOpen to be thrown on second and subsequent calls. If a call
is made to commit, checkpoint, or abort on a transaction object and a call had not been
initially made to begin, a d_Error exception object of kind d_Error_TransactionNotOpen is
thrown.

Calling commit commits to the database all persistent objects modified (including those
created or deleted) within the transaction and releases any locks held by the transac-
tion. Implementations may choose to maintain the validity of d_Refs to persistent
objects across transaction boundaries. The commit operation does not delete the trans-
action object.

Calling checkpoint commits objects modified within the transaction since the last
checkpoint to the database. The transaction retains all locks it held on those objects at
the time the checkpoint was invoked. All d_Refs and pointers remain unchanged.

Calling abort aborts changes to objects and releases the locks, and does not delete the
transaction object.

The destructor aborts the transaction if it is active.

The boolean function is_active returns d_True if the transaction is active; otherwise, it
returns d_False.

In the current standard, transient objects are not subject to transaction semantics.
Committing a transaction does not remove transient objects from memory. Aborting a
transaction does not restore the state of modified transient objects.

d_Transaction objects are not long-lived (beyond process boundaries) and cannot be
stored to the database. This means that transaction objects may not be made persistent
and that the notion of “long transactions” is not defined in this specification.

In summary, the rules that apply to object modification (necessarily, during a transac-
tion) are as follows:

1. Changes made to persistent objects within a transaction can be “undone” by
aborting the transaction.

2. Transient objects are standard C++ objects.

3. Persistent objects created within the scope of a transaction are handled
consistently at transaction boundaries: stored to the database and removed
from memory (at transaction commit) or deleted (as a result of a transaction
abort).

48 ODMG C++ Binding
A thread must explicitly create a transaction object or associate itself with an existing
transaction object by calling join. The member function join attaches the caller’s thread
to the transaction, and the thread is detached from any other transaction it may be asso-
ciated with. Calling begin on a transaction object without doing a prior join implicitly
joins the transaction to the calling thread. All subsequent operations by the thread,
including reads, writes, and implicit lock acquisitions, are done under the thread’s
current transaction.

Calling leave detaches the caller’s thread from the d_Transaction instance without
attaching the thread to another transaction. The static function current can be called to
access the current d_Transaction object that the thread is associated with; null is
returned if the thread is not associated with a transaction.

If a transaction is associated with multiple threads, all of these threads are affected by
any data operations or transaction operations (begin, commit, checkpoint, abort). Concur-
rency control on data among threads is up to the client program in this case. In contrast,
if threads use separate transactions, the database system maintains ACID transaction
properties just as if the threads were in separate address spaces. Programmers must not
pass objects from one thread to another running under a different transaction; ODMG
does not define the results of doing this.

There are three ways in which threads can be used with transactions:

1. An application program may have exactly one thread doing database opera-
tions, under exactly one transaction. This is the simplest case, and it repre-
sents the vast majority of database applications today. Other applications on
separate machines or in separate address spaces may access the same data-
base under separate transactions. A thread can create multiple instances of
d_Transaction and can alternate between them by calling join.

2. There may be multiple threads, each with its own separate transaction. This
is useful for writing a service accessed by multiple clients on a network. The
database system maintains ACID transaction properties just as if the threads
were in separate address spaces. Programmers must not pass objects from
one thread to another thread running under a different transaction; ODMG
does not define the results of doing this.

3. Multiple threads may share one or more transactions. Using multiple threads
per transaction is recommended only for sophisticated programming because
concurrency control must be performed by the application.

5.3.8 d_Database Operations
There is a predefined type d_Database. It supports the following methods:

class d_Database {

5.3 C++ OML 49
public:
static d_Database ∗ const transient_memory;

enum access_status { not_open, read_write, read_only, exclusive };
d_Database();

void open(const char ∗ database_name,
access_status status = read_write);

void close();
void set_object_name(const d_Ref_Any &theObject,

const char∗ theName);
void rename_object(const char ∗ oldName,

const char ∗ newName);
d_Ref_Any lookup_object(const char ∗ name) const;

private:
d_Database(const d_Database &);

d_Database & operator=(const d_Database &);
};

The database object, like the transaction object, is transient. Databases cannot be
created programmatically using the C++ OML defined by this standard. Databases
must be opened before starting any transactions that use the database, and closed after
ending these transactions.

To open a database, use d_Database::open, which takes the name of the database as its
argument. This initializes the instance of the d_Database object.

database−>open("myDB");

Method open locates the named database and makes the appropriate connection to the
database. You must open a database before you can access objects in that database.
Attempts to open a database when it has already been opened will result in the
throwing of a d_Error exception object of kind d_Error_DatabaseOpen. Extensions to the
open method will enable some ODMSs to implement default database names and/or
implicitly open a default database when a database session is started. Some ODMSs
may support opening logical as well as physical databases. Some ODMSs may support
being connected to multiple databases at the same time.

To close a database, use d_Database::close:

database−>close();

Method close does appropriate cleanup on the named database connection. After you
have closed a database, further attempts to access objects in the database will cause a
d_Error exception object of kind d_Error_DatabaseClosed to be thrown. The behavior at
program termination if databases are not closed or transactions are not committed or
aborted is undefined.

50 ODMG C++ Binding
The name methods allow manipulating names of objects. The set_object_name method
assigns a character string name to the object referenced. If the string supplied as the
name argument is not unique within the database, a d_Error exception object of kind
d_Error_NameNotUnique will be thrown. Each call to set_object_name for an object adds
an additional name to the object. If a value of 0 is passed as the second parameter to
set_object_name, all of the names associated with the object are removed.

The rename_object method changes the name of an object. If the new name is already
in use, a d_Error exception object of kind d_Error_NameNotUnique will be thrown and
the old name is retained. A name can be removed by passing 0 as the second parameter
to rename_object. Names are not automatically removed when an object is deleted. If a
call is made to lookup_object with the name of a deleted object, a null d_Ref_Any is
returned. Previous releases removed the names when the object was deleted.

An object is accessed by name using the d_Database::lookup_object member function. A
null d_Ref_Any is returned if no object with the name is found in the database.

Example:

d_Ref<Professor> prof = myDatabase−>lookup_object("Newton");

If a Professor instance named “Newton” exists, it is retrieved and a d_Ref_Any is
returned by lookup_object. The d_Ref_Any return value is then used to initialize prof. If
the object named “Newton” is not an instance of Professor or a subclass of Professor, a
d_Error exception object of kind d_Error_TypeInvalid is thrown during this initialization.

If the definition of a class in the application does not match the database definition of
the class, a d_Error exception object of kind d_Error_DatabaseClassMismatch is thrown.

5.3.9 Class d_Extent<T>
The class d_Extent<T> provides an interface to the extent of a persistence-capable class
T in the C++ binding.

d_Extent provides nearly the same interface as the d_Collection class.

template <class T> class d_Extent
{
public:

d_Extent (const d_Database∗ base,
d_Boolean include_subclasses = d_True);

virtual ~d_Extent ();
unsigned long cardinality() const;
d_Boolean is_empty() const;
d_Boolean allows_duplicates() const;
d_Boolean is_ordered() const;
d_Iterator<T> create_iterator() const;

5.3 C++ OML 51
d_Iterator<T> begin() const;
d_Iterator<T> end() const;
d_Ref<T> select_element (const char ∗ OQL_pred) const;
d_Iterator<T> select (const char ∗ OQL_pred) const;
int query(d_Collection<d_Ref<T> > &,

const char* OQL_pred) const;
d_Boolean exists_element (const char ∗ OQL_pred) const;

protected:
d_Extent (const d_Extent<T> &);

d_Extent<T> & operator=(const d_Extent<T> &);
};

The database schema definition contains a parameter for each persistent class
specifying whether the ODMS should maintain an extent for the class. This parameter
can be set using the schema API or a database tool that enables specification of the
schema.

The content of a d_Extent<T> is automatically maintained by the ODMS. The d_Extent
class therefore has neither insert nor remove methods. d_Extents themselves are not
persistence-capable and cannot be stored in the database. This explains why d_Extent
is not derived from d_Collection; since d_Collection is in turn derived from d_Object, this
would imply that extents are also persistence-capable. However, semantically d_Extent
is equivalent to d_Set.

If users want to maintain an extent, they can define a d_Set<d_Ref<T> > that is stored
in the database, as in the example in Section 5.6.

The class d_Extent supports polymorphism when the constructor argument
include_subclasses is a true value. If type B is a subtype of A, a d_Extent for A includes
all instances of A and B.

The association of a d_Extent to a type is performed by instantiating the template with
the appropriate type. Every d_Extent instance must be associated with a database by
passing a d_Database pointer to the constructor.

d_Extent<Person> PersonExtent(database);

Passing the database pointer to the constructor instead of operator new (as with
d_Object) allows the user to instantiate a d_Extent instance on the stack. If no extent has
been defined in the database schema for the class, an exception is thrown.

Comparison operators like operator== and operator!= or the subset and superset methods
of d_Set do not make sense for d_Extent, since all instances of a d_Extent for a given type
have the same content.

52 ODMG C++ Binding
5.3.10 Exceptions
Instances of d_Error contain state describing the cause of the error. This state is
composed of a number, representing the kind of error, and optional additional infor-
mation. This additional information can be appended to the error object by using oper-
ator<<. If the d_Error object is caught, more information can be appended to it if it is to
be thrown again. The complete state of the object is returned as a human-readable char-
acter string by the what function.

The d_Error class is defined as follows:

class d_Error : public exception {
public:

typedef d_Long kind;
d_Error();
d_Error(const d_Error &);
d_Error(kind the_kind);
~d_Error();

kind get_kind();
void set_kind(kind the_kind);
const char ∗ what() const throw();

d_Error & operator<<(d_Char);
d_Error & operator<<(d_Short);
d_Error & operator<<(d_UShort);
d_Error & operator<<(d_Long);
d_Error & operator<<(d_ULong);
d_Error & operator<<(d_Float);
d_Error & operator<<(d_Double);
d_Error & operator<<(const char ∗);
d_Error & operator<<(const d_String &);
d_Error & operator<<(const d_Error &);

};

The null constructor initializes the kind property to d_Error_None. The class d_Error is
responsible for releasing the string that is returned by the member function what.

The following constants are defined for error kinds used in this standard. Note that each
of these names has a prefix of d_Error_.

Error Name Description
None No error has occurred.
DatabaseClassMismatch The definition of a class in the application does

not match the database definition of the class.

5.3 C++ OML 53
DatabaseClassUndefined The database does not have the schema
information about a class.

DatabaseClosed The database is closed; objects cannot be
accessed.

DatabaseOpen The database is already open.
DateInvalid An attempt was made to set a d_Date object to an

invalid value.
ElementNotFound An attempt was made to access an element that is

not in the collection.
IteratorDifferentCollections An iterator, passed to a member function of a col-

lection, is not associated with the collection.
IteratorExhausted An attempt was made to either advance an iterator

once it already reached the end of a collection or
move backward once the first element was
reached.

IteratorNotBackward An attempt was made to iterate backward with
either a d_Set<T> or d_Bag<T>.

NameNotUnique An attempt was made to associate an object with a
name that is not unique in the database.

PositionOutOfRange A position within a collection has been supplied
that exceeds the range of the index (0, cardinality
−1).

QueryParameterCountInvalid The number of arguments used to build a query
with the d_OQL_Query object does not equal the
number of arguments supplied in the query string.

QueryParameterTypeInvalid Either the parameters specified in the query or the
return value type does not match the types in the
database.

RefInvalid An attempt was made to dereference a d_Ref that
references an object that does not exist.

RefNull An attempt was made to dereference a null d_Ref.
TimeInvalid An attempt was made to set a d_Time object to an

invalid value.
TimestampInvalid An attempt was made to set a d_Timestamp object

to an invalid value.

Error Name Description

54 ODMG C++ Binding
The following table indicates which functions throw these exceptions.

MemberIsOfInvalidType The second template argument of either
d_Rel_Ref, d_Rel_Set, or d_Rel_List references a
data member that is not of type d_Rel_Ref,
d_Rel_Set, or d_Rel_List.

MemberNotFound The second template argument of either
d_Rel_Ref, d_Rel_Set, or d_Rel_List references a
data member that does not exist in the referenced
class.

TransactionNotOpen A call has been made to either commit or abort
without a prior call to begin.

TransactionOpen d_Transaction::begin has been called multiple times
on the same transaction object, without an inter-
vening commit or abort.

TypeInvalid A d_Ref<T> was initialized to reference an object
that is not of type T or a subclass of T.

Error Name Raised By
DatabaseClassMismatch d_Database::lookup_object

DatabaseClassUndefined d_Object::new

DatabaseClosed d_Database::close

DatabaseOpen d_Database::open

DateInvalid Any method that alters the date value
IteratorExhausted d_Iterator functions get_element, ++, --,operator ∗

NameNotUnique d_Database::set_object_name

PositionOutOfRange d_List::operator[], d_Varray::operator[]

QueryParameterCountInvalid d_oql_execute

QueryParameterTypeInvalid d_oql_execute

RefInvalid d_Ref<T> functions operator−>, operator ∗
RefNull d_Ref<T> functions operator−>, operator ∗
TimeInvalid Any method that alters the time value
TimestampInvalid Any method that alters the timestamp value
TransactionOpen d_Transaction::begin

TypeInvalid d_Ref constructor

Error Name Description

5.4 C++ OQL 55
5.4 C++ OQL
Chapter 4 outlined the Object Query Language. In this section, the OQL semantics are
mapped into the C++ language.

5.4.1 Query Method on Class Collection
The d_Collection class has a query member function whose signature is

int query(d_Collection<T> &result, const char∗ predicate) const;

This function filters the collection using the predicate and assigns the result to the first
parameter. It returns a code different from 0, if the query is not well formed. The pred-
icate is given as a string with the syntax of the where clause of OQL. The predefined
variable this is used inside the predicate to denote the current element of the collection
to be filtered.

Example:

Given the class Student, as defined in Chapter 3, with extent referenced by Students,
compute the set of students who take math courses:

d_Bag<d_Ref<Student> > mathematicians;
Students−>query(mathematicians,

“exists s in this.takes: s.section_of.name = \“math\” ”);

5.4.2 d_oql_execute Function
An interface is provided to gain access to the complete functionality of OQL from a
C++ program. There are several steps involved in the specification and execution of
the OQL query. First, a query gets constructed via an object of type d_OQL_Query.
Once a query has been constructed, the query is executed. Once constructed, a query
can be executed multiple times with different argument values.

The function to execute a query is called d_oql_execute; it is a free-standing template
function, not part of any class definition:

template<class T> void d_oql_execute(d_OQL_Query &query, T &result);

The first parameter, query, is a reference to a d_OQL_Query object specifying the query
to execute. The second parameter, result, is used for returning the result of the query.
The type of the query result must match the type of this second parameter, or a d_Error
exception object of kind d_Error_QueryParameterTypeInvalid is thrown. Type checking
of the input parameters according to their use in the query is done at runtime. Similarly,
the type of the result of the query is checked. Any violation of type would cause a
d_Error exception object of kind d_Error_QueryParameterTypeInvalid to be thrown. If the
query returns a persistent object of type T, the function returns a d_Ref<T>. If the query
returns a structured literal, the value of it is assigned to the value of the object or collec-
tion denoted by the result parameter.

56 ODMG C++ Binding
If the result of the query is a large collection, a function d_oql_execute can be used. This
function returns an iterator on the result collection instead of the collection itself. The
behavior of this stand-alone function is exactly the same as the d_oql_execute function.

template<class T> void d_oql_execute (d_OQL_Query &q, d_Iterator<T> &results);

The << operator has been overloaded for d_OQL_Query to allow construction of the
query. It concatenates the value of the right operand onto the end of the current value
of the d_OQL_Query left operand. These functions return a reference to the left operand
so that invocations can be cascaded.

Note that instances of d_OQL_Query contain either a partial or a complete OQL query.
An ODMG implementation will contain ancillary data structures to represent a query
both during its construction and once it is executed. The d_OQL_Query destructor will
appropriately remove any ancillary data when the object gets deleted.

The d_OQL_Query class is defined as follows:

Definition:

class d_OQL_Query {
public:

d_OQL_Query();
d_OQL_Query(const char ∗ s);
d_OQL_Query(const d_String &s);
d_OQL_Query(const d_OQL_Query &q);
~d_OQL_Query();

d_OQL_Query & operator=(const d_OQL_Query &q);
void clear();

friend d_OQL_Query & operator<<(d_OQL_Query &q, const char ∗ s);
friend d_OQL_Query & operator<<(d_OQL_Query &q, const d_String &s);
friend d_OQL_Query & operator<<(d_OQL_Query &q, d_Char c);
friend d_OQL_Query & operator<<(d_OQL_Query &q, d_Octet uc);
friend d_OQL_Query & operator<<(d_OQL_Query &q, d_Short s);
friend d_OQL_Query & operator<<(d_OQL_Query &q, d_UShort us);
friend d_OQL_Query & operator<<(d_OQL_Query &q, int i);
friend d_OQL_Query & operator<<(d_OQL_Query &q, unsigned int ui);
friend d_OQL_Query & operator<<(d_OQL_Query &q, d_Long l);
friend d_OQL_Query & operator<<(d_OQL_Query &q, d_ULong ul);
friend d_OQL_Query & operator<<(d_OQL_Query &q, d_Float f);
friend d_OQL_Query & operator<<(d_OQL_Query &q, d_Double d);
friend d_OQL_Query & operator<<(d_OQL_Query &q, const d_Date &d);
friend d_OQL_Query & operator<<(d_OQL_Query &q, const d_Time &t);

5.4 C++ OQL 57
friend d_OQL_Query & operator<<(d_OQL_Query &q, const d_Timestamp &);
friend d_OQL_Query & operator<<(d_OQL_Query &q, const d_Interval &i);
template<class T> friend d_OQL_Query & operator<<(d_OQL_Query &q,

const d_Ref<T> &r);
template<class T> friend d_OQL_Query & operator<<(d_OQL_Query &q,

const d_Collection<T> &c);
};

Strings used in the construction of a query may contain parameters signified by the form
$i, where i is a number referring to the ith subsequent right operand in the construction
of the query; the first subsequent right operand would be referred to as $1. If any of the
$i are not followed by a right operand construction argument at the point d_oql_execute is
called, a d_Error exception object of kind d_Error_QueryParameterCountInvalid is thrown.
This exception will also be thrown if too many parameters are used in the construction
of the query. If a query argument is of the wrong type, a d_Error exception object of kind
d_Error_QueryParameterTypeInvalid is thrown.

The operation clear can be called to clear the values of any query parameters that have
been provided to an instance of d_OQL_Query.

Once a query has been successfully executed via d_oql_execute, the arguments associated
with the $i parameters are cleared and new arguments must be supplied. If any exceptions
are thrown, the query arguments are not implicitly cleared and must be cleared explicitly
by invoking clear. The original query string containing the $i parameters is retained
across the call to d_oql_execute.

The d_OQL_Query copy constructor and assignment operator copy all the underlying data
structures associated with the query, based upon the parameters that have been passed to
the query at the point the operation is performed. If the original query object had two
parameters passed to it, the object that is new or assigned to should have those same two
parameters initialized. After either of these operations, the two d_OQL_Query objects
should be equivalent and have identical behavior.

Example:

Among the math students (as computed before in Section 5.4.1 into the variable mathe-
maticians) who are teaching assistants and earn more than x, find the set of professors that
they assist. Suppose there exists a named set of teaching assistants called “TA”.

d_Bag<d_Ref<Student> > mathematicians; // computed as above
d_Bag<d_Ref<Professor> > assisted_profs;
double x = 50000.00;

d_OQL_Query q1 (
"select t.assists.taught_by from t in TA where t.salary > $1 and t in $2");

58 ODMG C++ Binding
q1 << x << mathematicians;
d_oql_execute(q1, assisted_profs);

After the above code has been executed, it could be followed by another query, passing
in different arguments.

d_Set<d_Ref<Student> > historians; // assume this gets computed similarly
 // to mathematicians

double y = 40000.00

q1 << y << historians;
d_oql_execute(q1, assisted_profs);

The ODMG OQL implementation may have parsed, compiled, and optimized the orig-
inal query; it can now reexecute the query with different arguments without incurring
the overhead of compiling and optimizing the query.

5.5 Schema Access
This section describes an interface for accessing the schema of an ODMG database via
a C++ class library. The schema information is based on the metadata described in
Chapter 2. The C++ schema definition differs in some respects from the
language-independent, abstract specification of the schema in ODL. Attempts have
been made to make the schema access conform to C++ programming practices in order
that the use of the API be intuitive for C++ programmers. C++-specific ODL exten-
sions have been included in the API, in addition to the abstract ODL schema, since the
C++ ODL is a superset of the ODMG ODL described in Chapter 2.

The schema access API is structured as an object-oriented framework. Only the inter-
face methods through which meta-information is manipulated are defined, rather than
defining the entire class structure and details of the internal implementation. The
ODMS implementation can choose the actual physical representation of the schema
database. The ODL schema lists the classes that are used to describe a schema. It also
uses ODL relationships to show how instances of these classes are interrelated. To
allow maximum flexibility in an implementation of this model, methods are provided
to traverse the relationships among instances of these classes, rather than mapping the
ODL relationships directly to C++ data members.

The specification currently contains only the read interface portion of the schema API.
The ODMG plans to extend the specification to include a full read/write interface
enabling dynamic modification of the schema (e.g., creation and modification of
classes). The initial read-only interface will substantially increase the flexibility and
usability of the standard. The following application domains will be able to take advan-
tage of this interface:

5.5 Schema Access 59
• Database tool development (e.g., class and object browsers, import/export
utilities, Query By Example implementations)

• CASE tools
• Schema management tools
• Distributed computing and dynamic binding, object brokers (CORBA)
• Management of extended database properties (e.g., access control and user

authorization)
This concept is analogous to the system table approach used by relational database
systems. However, since it is a true object mapping, it also includes schema semantics
(e.g., relationships between classes and properties), making it much easier to use.

5.5.1 The ODMG Schema Access Class Hierarchy
This section defines the types in the ODMG schema access class hierarchy. Subclasses
are indented and placed below their base class. The names in square brackets denote
additional base classes, if the class inherits from more than one class. Types in italic
code font are abstract classes and cannot be directly instantiated; classes in code font
can be instantiated. These classes are described in more detail in later sections using
both C++ and ODL syntax.

• d_Scope
d_Scope instances are used to form a hierarchy of meta objects. A d_Scope
instance contains a list of d_Meta_Object instances, which are defined in the
scope; operations to manage the list (e.g., finding a d_Meta_Object by its
name) are provided. All meta objects are defined in a scope.

• d_Meta_Object
Instances of d_Meta_Object are used to describe elements of the schema stored
in the dictionary.

• d_Module [d_Scope]
d_Module instances manage domains in a dictionary. They are used to
group and order d_Meta_Object instances, such as type/class descriptions,
constant descriptions, subschemas (expressed as d_Module objects), and
so on.

• d_Type
d_Type is an abstract base class for all type descriptions.

• d_Class [d_Scope]
A d_Class instance is used to describe an application-defined class
whose d_Attribute and d_Relationship instances represent the concrete
state of an instance of that class. The state is stored in the database.
All persistence-capable classes are described by a d_Class instance.

• d_Ref_Type

60 ODMG C++ Binding
d_Ref_Type instances are used to describe types that are references to
other objects. References can be pointers, references (like
d_Ref<T>), or other language-specific references. The referenced
object or literal can be shared by more than one reference, that is,
multiple references can reference the same object.

• d_Collection_Type
A d_Collection_Type describes a type whose instances group a set of
elements in a collection. The collection elements must be of the
same (base) type.

• d_Keyed_Collection_Type
A d_Keyed_Collection_Type describes a collection that can be
accessed via keys.

• d_Primitive_Type
A d_Primitive_Type represents all built-in types, for example, int (16,
32 bit), float, and so on, as well as predefined ODMG literals such as
d_String.

• d_Enumeration_Type [d_Scope]
d_Enumeration_Type describes a type whose domain is a list of
identifiers.

• d_Structure_Type [d_Scope]
d_Structure_Type instances describe application-defined member
values. The members are described by d_Attribute instances and
represent the state of the structure. Structures do not have object
identity.

• d_Alias_Type
A d_Alias_Type describes a type that is equivalent to another d_Type,
but has another name.

• d_Property
d_Property is an abstract base class for all d_Meta_Object instances that
describe the state (abstract or concrete) of application-defined types.

• d_Relationship
Instances of d_Relationship describe relationships between persistent
objects; in C++ these are expressed as d_Rel_Ref<T, MT>,
d_Rel_Set<T, MT>, and d_Rel_List<T, MT> data members of a class.

• d_Attribute
A d_Attribute instance describes the concrete state of an object or
structure.

• d_Operation [d_Scope]

5.5 Schema Access 61
d_Operation instances describe methods, including their return type, iden-
tifier, signature, and list of exceptions.

• d_Exception
d_Exception instances describe exceptions that are raised by operations
represented by instances of d_Operation.

• d_Parameter
A d_Parameter describes a parameter of an operation. A parameter has a
name, a type, and a mode (in, out, inout).

• d_Constant
A d_Constant describes a value that has a name and a type. The value may
not be changed.

• d_Inheritance
d_Inheritance is used to describe the bidirectional relationship between a base
class and a subclass, as well as the type of inheritance used.

5.5.2 Schema Access Interface
The following interfaces describe the external C++ interface of an ODMG 2.0 schema
repository. The interface is defined in terms of C++ classes with public methods,
without exposing or suggesting any particular implementation.

In the following specification, some hints are provided as to how the ODL interface
repository described in Chapter 2 has been mapped into the C++ interface.

All objects in the repository are subclasses of d_Meta_Object or d_Scope.

Interfaces that return a list of objects are expressed using iterator types, traversal of
proposed relationships is expressed via methods that return iterators, and access to
attributes is provided using accessor functions.

An implementation of this interface is not required to use a particular implementation
of the iterator type. We follow a design principle used in STL. Classes that have 1-to-n
relationships to other classes define only a type to iterate over this relationship. A
conformant implementation of the schema repository can implement these types by
means of the d_Iterator type (but is not required to).

The iterator protocol must support at least the following methods. In subsequent
sections, this set of methods for iterator type IterType is referred to as a “constant
forward iterator” over type T.

IterType();
IterType(const IterType &);

IterType & operator=(const IterType &);
int operator==(const IterType &) const;
int operator!=(const IterType &) const;

62 ODMG C++ Binding
IterType & operator++();
IterType operator++(int);
const T & operator∗ () const;

The operator++ advances the iterator to the next element, and operator∗ retrieves the
element. The iterator is guaranteed to always return the elements in the same order.
The iterator in class d_Scope that iterates over instances of type d_Meta_Object would
be of type d_Scope::meta_object_iterator.

The following names are used for embedded types that provide constant forward
iteration.

Each class that iterates over elements of one of these types has an iterator type defined
within the class with the corresponding name. This is denoted in the class interface
with a line similar to the following:

typedef property_iterator; // this implies an iterator type with this name is defined
Properties and classes have access specifiers in C++. Several of the metaclass objects
make use of the following enumeration:

typedef enum { d_PUBLIC, d_PROTECTED, d_PRIVATE } d_Access_Kind;

5.5.2.1 d_Scope

d_Scope instances are used to form a hierarchy of meta objects. A d_Scope contains a
list of d_Meta_Object instances that are defined in the scope, as well as operations to
manage the list. The method resolve is used to find a d_Meta_Object by name. All
instances of d_Meta_Object, except d_Module, have exactly one d_Scope object. This

Iterator Type Name Element Type
alias_type_iterator d_Alias_Type

attribute_iterator d_Attribute

collection_type_iterator d_Collection_Type

constant_iterator d_Constant

exception_iterator d_Exception

inheritance_iterator d_Inheritance

keyed_collection_type_iterator d_Keyed_Collection_Type

operation_iterator d_Operation

parameter_iterator d_Parameter

property_iterator d_Property

ref_type_iterator d_Ref_Type

relationship_iterator d_Relationship

type_iterator d_Type

5.5 Schema Access 63
represents a “defined in” relationship. The type d_Scope::meta_object_iterator defines a
protocol to traverse this relationship in the other direction.

class d_Scope {
public:

const d_Meta_Object & resolve(const char *name) const;
typedef meta_object_iterator;
meta_object_iterator defines_begin() const;
meta_object_iterator defines_end() const;

};

5.5.2.2 d_Meta_Object

Class d_Meta_Object has a name, an ID, and a comment attribute. Some instances of
d_Meta_Object are themselves scopes (instances of d_Scope); that is, they define a name
space in which other d_Meta_Object instances can be identified (resolved) by name.
They form a defines/defined_in relationship with other d_Meta_Object instances and
are their defining scopes. The scope of a d_Meta_Object is obtained by the method
defined_in.

class d_Meta_Object {
public:

const char * name() const;
const char * comment() const;
const d_Scope & defined_in() const;

};

5.5.2.3 d_Module

A d_Module manages domains in a dictionary. They are used to group and order
d_Meta_Object instances such as type/class descriptions, constant descriptions,
subschemas (expressed as d_Module objects), and so on. A d_Module is also a d_Scope
that provides client repository services. A module is the uppermost meta object in a
naming hierarchy. The class d_Module provides methods to iterate over the various
meta objects that can be defined in a module. It is an entry point for accessing instances
of d_Type, d_Constant, and d_Operation. The d_Type objects returned by type_iterator can
be asked for the set of d_Operations, d_Properties, and so on that describe operations and
properties of the module. It is then possible to navigate further down in the hierarchy.
For example, from d_Operation, the set of d_Parameter instances can be reached, and so
on.

class d_Module : public d_Meta_Object, public d_Scope {
public:

static const d_Module & top_level(const d_Database &);

typedef type_iterator;

64 ODMG C++ Binding
type_iterator defines_types_begin() const;
type_iterator defines_types_end() const;

typedef constant_iterator;
constant_iterator defines_constant_begin() const;
constant_iterator defines_constant_end() const;

typedef operation_iterator;
operation_iterator defines_operation_begin() const;
operation_iterator defines_operation_end() const;

};

5.5.2.4 d_Type

d_Type meta objects are used to represent information about datatypes. They participate
in a number of relationships with the other d_Meta_Objects. These relationships allow
types to be easily administered within the repository and help to ensure the referential
integrity of the repository as a whole.

Class d_Type is defined as follows:

class d_Type : public d_Meta_Object {
public:

typedef alias_type_iterator;
alias_type_iterator used_in_alias_type_begin() const;
alias_type_iterator used_in_alias_type_end() const;

typedef collection_type_iterator;
collection_type_iterator used_in_collection_type_begin() const;
collection_type_iterator used_in_collection_type_end() const;

typedef keyed_collection_type_iterator;
keyed_collection_type_iterator used_in_keyed_collection_type_begin() const;
keyed_collection_type_iterator used_in_keyed_collection_type_end() const;

typedef ref_type_iterator;
ref_type_iterator used_in_ref_type_begin() const;
ref_type_iterator used_in_ref_type_end() const;

typedef property_iterator;
property_iterator used_in_property_begin() const;
property_iterator used_in_property_end() const;

typedef operation_iterator;

5.5 Schema Access 65
operation_iterator used_in_operation_begin() const;
operation_iterator used_in_operation_end() const;

typedef exception_iterator;
exception_iterator used_in_exception_begin() const;
exception_iterator used_in_exception_end() const;

typedef parameter_iterator;
parameter_iterator used_in_parameter_begin() const;
parameter_iterator used_in_parameter_end() const;

typedef constant_iterator;
constant_iterator used_in_constant_begin() const;
constant_iterator used_in_constant_end() const;

};

5.5.2.5 d_Class

A d_Class object describes an application-defined type whose attributes and relation-
ships form the concrete state of an object of that type. The state is stored in the data-
base. All persistence-capable classes are described by a d_Class instance.

d_Class objects are linked in a multiple inheritance graph by two relationships, inherits
and derives. The relationship between two d_Class objects is formed by means of one
connecting d_Inheritance object. A d_Class object also indicates whether the database
maintains an extent for the class.

A class defines methods, data and relationship members, constants, and types; that is,
the class is their defining scope.

Methods, data and relationship members, constants, and types are modeled by a list of
related objects of type d_Operation, d_Attribute, d_Relationship, d_Constant, and d_Type.
These descriptions can be accessed by name using the inherited method
d_Scope::resolve. The methods resolve_operation, resolve_attribute, or resolve_constant can
be used as shortcuts.

The inherited iterator d_Meta_Object::meta_object_iterator returns descriptions for
methods, data members, relationship members, constants, and types. Methods, data
members, relationship members, constants, and types are also accessible via special
iterators. The following functions provide iterators that return their elements in their
declaration order:

• base_class_list_begin
• defines_attribute_begin
• defines_operation_begin

66 ODMG C++ Binding
• defines_constant_begin
• defines_relationship_begin
• defines_type_begin

The class d_Class is defined as follows:

class d_Class : public d_Type, public d_Scope {
public:

typedef inheritance_iterator;
inheritance_iterator sub_class_list_begin() const;
inheritance_iterator sub_class_list_end() const;
inheritance_iterator base_class_list_begin() const;
inheritance_iterator base_class_list_end() const;

d_Boolean persistent_capable() const; // derived from d_Object?

// these methods are used to return the characteristics of the class
typedef operation_iterator;
operation_iterator defines_operation_begin() const;
operation_iterator defines_operation_end() const;
const d_Operation & resolve_operation(const char *name) const;

typedef attribute_iterator;
attribute_iterator defines_attribute_begin() const;
attribute_iterator defines_attribute_end() const;
const d_Attribute & resolve_attribute(const char *name) const;

typedef relationship_iterator;
relationship_iterator defines_relationship_begin() const;
relationship_iterator defines_relationship_end() const;
const d_Relationship& resolve_relationship(const char *name) const;

typedef constant_iterator;
constant_iterator defines_constant_begin() const;
constant_iterator defines_constant_end() const;
const d_Constant & resolve_constant(const char *name) const;

typedef type_iterator;
type_iterator defines_type_begin() const;
type_iterator defines_type_end() const;
const d_Type & resolve_type(const char *name) const;

5.5 Schema Access 67
d_Boolean has_extent() const;
};

5.5.2.6 d_Ref_Type

d_Ref_Type instances are used to describe types that are references to other types.
References can be pointers, references (like d_Ref<T>), or other language-specific
references. The referenced object or literal can be shared by more than one reference.

class d_Ref_Type : public d_Type {
public:

typedef enum { REF, POINTER } d_Ref_Kind;
d_Ref_Kind ref_kind() const;
const d_Type & referenced_type() const;

};

5.5.2.7 d_Collection_Type

A d_Collection_Type describes a type that aggregates a variable number of elements of
a single type and provides ordering, accessing, and comparison functionality.

class d_Collection_Type : public d_Type {
public:

typedef enum { LIST,
ARRAY,
BAG,
SET,
DICTIONARY,
STL_LIST,
STL_SET,
STL_MULTISET,
STL_VECTOR,
STL_MAP,
STL_MULTIMAP } d_Kind;

d_Kind kind() const;
const d_Type & element_type() const;

};

5.5.2.8 d_Keyed_Collection_Type

A d_Keyed_Collection_Type describes a collection type whose element can be accessed
via keys. Examples are dictionaries and maps.

class d_Keyed_Collection_Type : public d_Collection_Type {
public:

68 ODMG C++ Binding
const d_Type & key_type() const;
const d_Type & value_type() const;

};

5.5.2.9 d_Primitive_Type

d_Primitive_Type objects represent built-in types. These types are atomic; they are not
composed of other types.

class d_Primitive_Type : public d_Type {
public:

typedef enum {
CHAR,
SHORT,
LONG,
DOUBLE,
FLOAT,
USHORT,
ULONG,
OCTET,
BOOLEAN,
ENUMERATION } d_TypeId;

d_TypeId type_id() const;
};

5.5.2.10 d_Enumeration_Type

A d_Enumeration_Type describes a type whose domain is a list of identifiers.

An enumeration defines a scope for its identifiers. These identifiers are modeled by a
list of related d_Constant objects. The d_Constant objects accessed via the iterator
returned by defines_constant_begin are returned in their declaration order.

Constant descriptions can be accessed by name using the inherited method
d_Scope::resolve. The method resolve_constant can also be used as a shortcut. The inher-
ited iterator d_Meta_Object::meta_object_iterator returns enumeration member descrip-
tions of type d_Constant.

The name of the constant descriptions is equivalent to the domain of the enumeration
identifiers. All constants of an enumeration must be of the same discrete type. The
enumeration identifiers are associated with values of this discrete type. For instance,
an enumeration “days_of_week” has the domain “Monday,” “Tuesday,”
“Wednesday,” and so on. The enumeration description refers to a list of seven constant
descriptions. The names of these descriptions are named “Monday,” “Tuesday,”
“Wednesday,” and so on. All these descriptions reference the same type description,
here an object of type d_Primitive_Type with the name “int”. The values of the constants

5.5 Schema Access 69
are integers, for example, 1, 2, 3, and so on up to 7, and can be obtained from the
constant description.

class d_Enumeration_Type : public d_Primitive_Type, public d_Scope{
public:

typedef constant_iterator;
constant_iterator defines_constant_begin() const;
constant_iterator defines_constant_end() const;
const d_Constant & resolve_constant(const char *name) const;

};

5.5.2.11 d_Structure_Type

d_Structure_Type describes application-defined aggregated values. The members repre-
sent the state of the structure. Structures have no identity.

A structure defines a scope for its members. These members are modeled using a list
of related d_Attribute objects. The member descriptions can be accessed by name using
the inherited method d_Scope::resolve. The method resolve_attribute can be used as a
shortcut.

The inherited iterator d_Meta_Object::meta_object_iterator returns member descriptions
of type d_Attribute. Structure members are also accessible via the iterator returned by
defines_attribute_begin, which returns them during iteration in the order they are
declared in the structure.

class d_Structure_Type : public d_Type, public d_Scope {
public:

typedef attribute_iterator;
attribute_iterator defines_attribute_begin() const;
attribute_iterator defines_attribute_end() const;
const d_Attribute & resolve_attribute(const char *name) const;

};

5.5.2.12 d_Alias_Type

A d_Alias_Type describes a type that is equivalent to another type, but has another
name. The description of the related type is returned by the method alias_type.

The defining scope of a type alias is either a module or a class; the inherited method
d_Meta_Object::defined_in returns an object of class d_Class or d_Module.

class d_Alias_Type : public d_Type {
public:

const d_Type & alias_type() const;
};

70 ODMG C++ Binding
5.5.2.13 d_Property

d_Property is an abstract base class for d_Attribute and d_Relationship. Properties have a
name and a type. The name is returned by the inherited method d_Meta_Object:: name.
The type description can be obtained using the method type_of.

Properties are defined in the scope of exactly one structure or class. The inherited
method d_Meta_Object::defined_in returns an object of class d_Structure_Type or d_Class,
respectively.

class d_Property : public d_Meta_Object {
public:

const d_Type & type_of() const;
d_Access_Kind access_kind() const;

};

5.5.2.14 d_Attribute

d_Attribute describes a member of an object or a literal. An attribute has a name and a
type. The name is returned by the inherited method d_Meta_Object::name. The type
description of an attribute can be obtained using the inherited method d_Property::
type_of.

Attributes may be read-only, in which case their values cannot be changed. This is
described in the meta object by the method is_read_only. If an attribute is a static data
member of a class, the method is_static returns d_True.

Attributes are defined in the scope of exactly one class or structure. The inherited
method d_Meta_Object::defined_in returns an object of class d_Class or d_Structure_Type,
respectively.

class d_Attribute : public d_Property {
public:

d_Boolean is_read_only() const;
d_Boolean is_static() const;
unsigned long dimension() const;

};

5.5.2.15 d_Relationship

d_Relationships model bilateral object references between participating objects. In prac-
tice, two relationship meta objects are required to represent each traversal direction of
the relationship. Operations are defined implicitly to form and drop the relationship, as
well as accessor operations for traversing the relationship. The inherited d_Type
expresses the cardinality. It may be either a d_Rel_Ref, d_Rel_Set, or d_Rel_List; the
method rel_kind returns a d_Rel_Kind enumeration indicating the type.

5.5 Schema Access 71
The defining scope of a relationship is a class. The inherited method
d_Meta_Object::defined_in returns a d_Class object. The method defined_in_class can be
used as a shortcut.

class d_Relationship : public d_Property {
public:

typedef enum { REL_REF, REL_SET, REL_LIST } d_Rel_Kind;
d_Rel_Kind rel_kind() const;
const d_Relationship & inverse() const;
const d_Class & defined_in_class() const;

};

5.5.2.16 d_Operation

d_Operation describes the behavior supported by application objects. Operations have
a name, a return type, and a signature (list of parameters), which is modeled by the
inherited method d_Meta_Object::name, a d_Type object returned by result_type, and a list
of d_Parameter objects (accessible via an iterator). The d_Parameter objects are returned
during iteration in the order that they are declared in the operation. Operations may
raise exceptions. The list of possible exceptions is described by a list of d_Exception
objects (accessible via an iterator).

Operations may have an access specifier. This is described by the method access_kind
inherited from d_Property.

An operation defines a scope for its parameters. They can be accessed by name using
the inherited method d_Scope::resolve. The method resolve_parameter can be used as a
shortcut.

The inherited iterator d_Meta_Object::meta_object_iterator returns a parameter descrip-
tion of type d_Parameter. Parameters are also accessible via a special parameter_iterator.

The defining scope for an operation is either a class or a module.

The inherited method d_Meta_Object::defined_in returns a d_Class object.

class d_Operation : public d_Meta_Object, public d_Scope {
public:

const d_Type & result_type () const;
d_Boolean is_static() const;

typedef parameter_iterator;
parameter_iterator defines_parameter_begin() const;
parameter_iterator defines_parameter_end() const;
const d_Parameter & resolve_parameter(const char *name) const;

72 ODMG C++ Binding
typedef exception_iterator;
exception_iterator raises_exception_begin() const;
exception_iterator raises_exception_end() const;
d_Access_Kind access_kind() const;

};

If the operation is a static member function of a class, the method is_static returns
d_True.

5.5.2.17 d_Exception

Operations may raise exceptions. A d_Exception describes such an exception. An
exception has a name, which can be accessed using the inherited method
d_Meta_Object::name, and a type whose description can be obtained using the method
exception_type.

A single exception can be raised in more than one operation. The list of operation
descriptions can be accessed via an iterator.

The defining scope of an exception is a module. The inherited method
d_Meta_Object::defined_in returns a d_Module object. The method defined_in_module can
be used as a shortcut.

class d_Exception : public d_Meta_Object {
public:

const d_Type & exception_type() const;
typedef operation_iterator;
operation_iterator raised_in_operation_begin() const;
operation_iterator raised_in_operation_end() const;
const d_Module & defined_in_module() const;

};

5.5.2.18 d_Parameter

d_Parameter describes a parameter of an operation. Parameters have a name, a type, and
a mode (in, out, and inout). The name is returned by the inherited method
d_Meta_Object::name.

The type description can be obtained by the method parameter_type. The mode is
returned by the method mode.

Parameters are defined in the scope of exactly one operation, and the inherited method
d_Meta_Object::defined_in returns an object of class d_Operation. The method
defined_in_operation can be used as a shortcut.

class d_Parameter : public d_Meta_Object {
public:

5.6 Example 73
typedef enum { IN, OUT, INOUT } d_Mode;
d_Mode mode() const;
const d_Type & parameter_type() const;
const d_Operation & defined_in_operation() const;

};

5.5.2.19 d_Constant

Constants provide a mechanism for statically associating values with names in the
repository. Constants are used by enumerations to form domains. In this case, the name
of a d_Constant is used as an identifier for an enumeration value. Its name is returned
by the inherited method d_Meta_Object::name.

Constants are defined in the scope of exactly one module or class. The inherited
method d_Meta_Object::defined_in returns an object of class d_Module or d_Class.

class d_Constant : public d_Meta_Object {
public:

const d_Type & constant_type() const;
void * constant_value() const;

};

5.5.2.20 d_Inheritance

d_Inheritance is used to describe the bidirectional relationship between a base class and
a subclass, as well as the type of inheritance used. An object of type d_Inheritance
connects two objects of type d_Class.

Depending on the programming language, inheritance relationships can have proper-
ties. The schema objects that describe inheritance relationships are augmented with
information to reproduce the language-specific extensions.

class d_Inheritance {
public:

const d_Class & derives_from() const;
const d_Class & inherits_to() const;

d_Access_Kind access_kind() const;
d_Boolean is_virtual() const;

};

5.6 Example
This section gives a complete example of a small C++ application. This application
manages records about people. A Person may be entered into the database. Then special
events can be recorded: marriage, the birth of children, moving to a new address.

74 ODMG C++ Binding
The application comprises two transactions: The first one populates the database,
while the second consults and updates it.

The next section defines the schema of the database, as C++ ODL classes. The C++
program is given in the subsequent section.

5.6.1 Schema Definition
For the explanation of the semantics of this example, see Section 3.2.3. Here is the C++
ODL syntax:

// Schema Definition in C++ ODL
class City; // forward declaration
struct Address {

d_UShort number;
d_String street;
d_Ref<City> city;

Address();
Address(d_UShort, const char∗ , const d_Ref<City> &);

};

extern const char _spouse [], _parents [], _children [];

class Person : public d_Object {
public:
// Attributes (all public, for this example)

d_String name;
Address address;

// Relationships
d_Rel_Ref<Person, _spouse> spouse;
d_Rel_List<Person, _parents> children;
d_Rel_List<Person, _children> parents;

// Operations
Person(const char ∗ pname);

void birth(const d_Ref<Person> &child); // a child is born
void marriage(const d_Ref<Person> &to_whom);
d_Ref<d_Set<d_Ref<Person> > >ancestors() const; // returns ancestors
void move(const Address &); // move to a new address

// Extent
static d_Ref<d_Set<d_Ref<Person> > > people; // a reference to class extent1

static const char ∗ const extent_name;
};

5.6 Example 75
class City : public d_Object {
public:
// Attributes

d_ULong city_code;
d_String name;
d_Ref<d_Set<d_Ref<Person> > > population; // the people living in this city

// Operations
City(int, const char∗);

// Extension
static d_Ref<d_Set<d_Ref<City> > > cities; // a reference to the class extent
static const char ∗ const extent_name;
};

5.6.2 Schema Implementation
We now define the code of the operations declared in the schema. This is written in
plain C++. We assume the C++ ODL preprocessor has generated a file, “schema.hxx”,
which contains the standard C++ definitions equivalent to the C++ ODL classes.

// Classes Implementation in C++
#include "schema.hxx"

const char _spouse [] = "spouse";
const char _parents [] = "parents";
const char _children [] = "children";

// Address structure:

Address::Address(d_UShort pnum, const char∗ pstreet,
const d_Ref<City> &pcity)

 : number(pnumber),
street(pstreet),
city(pcity)

 { }

Address::Address()
 : number(0),

street(0),
city(0)

1. This (transient) static variable will be initialized at transaction begin time (see the application).

76 ODMG C++ Binding
 { }
// Person Class:
const char ∗ const Person::extent_name = "people";
Person::Person(const char ∗ pname)
 : name(pname)
 {

people−>insert_element(this); // Put this person in the extension
}
void Person::birth(const d_Ref<Person> &child)
 { // Adds a new child to the children list

children.insert_element_last(child);
if(spouse)

spouse−>children.insert_element_last(child);
}
void Person::marriage(const d_Ref<Person> &to_whom)
 { // Initializes the spouse relationship

spouse = with; // with−>spouse is automatically set to this person
}
d_Ref<d_Set<d_Ref<Person> > > Person::ancestors()
 { // Constructs the set of all ancestors of this person

d_Ref<d_Set<d_Ref<Person> > > the_ancestors =
new d_Set<d_Ref<Person> >;

int i;
for(i = 0; i < 2; i++)

if(parents[i]) {
// The ancestors = parents union ancestors(parents)
the_ancestors−>insert_element(parents[i]);
d_Ref<d_Set<d_Ref<Person> > > grand_parents= parents[i]−>ancestors();
the_ancestors−>union_with(∗ grand_parents);
grand_parents.delete_object();

}
return the_ancestors;

}
void Person::move(const Address &new_address)
 { // Updates the address attribute of this person

if(address.city)
address.city−>population−>remove_element(this);

new_address.city−>population−>insert_element(this);
mark_modified();1

5.6 Example 77
address = new_address;
}
// City class:

const char ∗ const City::extent_name = "cities";

City::City(d_ULong code, const char ∗ cname)
 : city_code(code),

name(cname)
 {

cities−>insert_element(this); // Put this city into the extension
}

5.6.3 An Application
We now have the whole schema well defined and implemented. We are able to popu-
late the database and play with it. In the following application, the transaction Load
builds some objects into the database. Then the transaction Consult reads it, prints some
reports from it, and makes updates. Each transaction is implemented inside a C++
function.

The database is opened by the main program, which then starts the transactions.

#include <iostream.h>
#include "schema.hxx"

static d_Database dbobj;
static d_Database ∗ database = &dbobj;

void Load()
 { // Transaction that populates the database

d_Transaction load;
load.begin();
// Create both persons and cities extensions, and name them.

Person::people = new(database) d_Set<d_Ref<Person> >;
City::cities = new(database) d_Set<d_Ref<City> >;

database−>set_object_name(Person::people, Person::extent_name);

1. Do not forget it! Notice that it is necessary only in the case where an attribute of the object is modified.
When a relationship is updated, the object is automatically marked modified.

78 ODMG C++ Binding
database−>set_object_name(City::cities, City::extent_name);

// Construct 3 persistent objects from class Person.

d_Ref<Person> God, Adam, Eve;

God = new(database, "Person") Person("God");
Adam = new(database, "Person") Person("Adam");
Eve = new(database, "Person") Person("Eve");

// Construct an Address structure, Paradise, as (7 Apple Street, Garden),
// and set the address attributes of Adam and Eve.

Address Paradise(7, "Apple", new(database, "City") City(0, "Garden"));

Adam−>move(Paradise);
Eve−>move(Paradise);

// Define the family relationships
God−>birth(Adam);
Adam−>marriage(Eve);
Adam−>birth(new(database, "Person") Person("Cain"));
Adam−>birth(new(database, "Person") Person("Abel"));

load.commit(); // Commit transaction, putting objects into the database
}

static void print_persons(const d_Collection<d_Ref<Person> >& s)
 { // A service function to print a collection of persons

d_Ref<Person> p;
d_Iterator<d_Ref<Person> > it = s.create_iterator();
while(it.next(p)) {

cout << "--- " << p−>name << " lives in ";
if (p−>address.city)

cout << p->address.city−>name;
else

cout << "Unknown";
cout << endl;

}
}

5.6 Example 79
void Consult()
 { // Transaction that consults and updates the database

d_Transaction consult;
d_List<d_Ref<Person> > list;
d_Bag<d_Ref<Person>> bag;
consult.begin();
// Static references to objects or collections must be recomputed
// after a commit
Person::people = database−>lookup_object(Person::extent_name);
City::cities = database−>lookup_object(City::extent_name);
// Now begin the transaction
cout << "All the people:" << endl;
print_persons(∗ Person::people);
cout << "All the people sorted by name:" << endl;
d_oql_execute(“select p from people order by name", list);
print_persons(list);
cout << "People having 2 children and living in Paradise ...:" << endl;
d_oql_execute(list, "select p from p in people\

where p.address.city.name = \"Garden\"\
and count(p.children) = 2", bag);

print_persons(bag);
// Adam and Eve are moving ...
Address Earth(13, "Macadam", new(database, "City") City(1, "St-Croix"));
d_Ref<Person> Adam;
d_oql_execute("element(select p from p in people\

where p.name = \"Adam\")", Adam);
Adam−>move(Earth);
Adam−>spouse−>move(Earth);
cout << "Cain’s ancestors ...:" << endl;
d_Ref<Person> Cain = Adam−>children.retrieve_element_at(0);
print_persons(∗ (Cain−>ancestors()));
consult.commit();

}

main()
 {

database−>open("family");
Load();
Consult();
database−>close();

80 ODMG C++ Binding
}

 Chapter 6

Smalltalk Binding
6.1 Introduction
This chapter defines the Smalltalk binding for the ODMG Object Model, ODL, and
OQL. While no Smalltalk language standard exists at this time, ODMG member orga-
nizations participate in the X3J20 INCITS Smalltalk standards committee. We expect
that as standards are agreed upon by that committee and commercial implementations
become available that the ODMG Smalltalk binding will evolve to accommodate
them. In the interests of consistency and until an official Smalltalk standard exists, we
will map many ODL concepts to class descriptions as specified by Smalltalk80.

6.1.1 Language Design Principles
The ODMG Smalltalk binding is based upon two principles: It should bind to Small-
talk in a natural way that is consistent with the principles of the language, and it should
support language interoperability consistent with ODL specification and semantics.
We believe that organizations who specify their objects in ODL will insist that the
Smalltalk binding honor those specifications. These principles have several implica-
tions that are evident in the design of the binding described in the body of this chapter.

1. There is a unified type system that is shared by Smalltalk and the ODMS.
This type system is ODL as mapped into Smalltalk by the Smalltalk binding.

2. The binding respects the Smalltalk syntax, meaning the Smalltalk language
will not have to be modified to accommodate this binding. ODL concepts
will be represented using normal Smalltalk coding conventions.

3. The binding respects the fact that Smalltalk is dynamically typed. Arbitrary
Smalltalk objects may be stored persistently, including ODL-specified
objects that will obey the ODL typing semantics.

4. The binding respects the dynamic memory management semantics of Small-
talk. Objects will become persistent when they are referenced by other per-
sistent objects in the database and will be removed when they are no longer
reachable in this manner.

2 ODMG Smalltalk Binding
6.1.2 Language Binding
The ODMG binding for Smalltalk is based upon the OMG Smalltalk IDL binding.1 As
ODL is a superset of IDL, the IDL binding defines a large part of the mapping required
by this document. This chapter provides informal descriptions of the IDL binding
topics and more formally defines the Smalltalk binding for the ODL extensions,
including relationships, literals, and collections.

The ODMG Smalltalk binding can be automated by an ODL compiler that processes
ODL declarations and generates a graph of meta objects, which model the schema of
the database. These meta objects provide the type information that allows the Small-
talk binding to support the required ODL type semantics. The complete set of such
meta objects defines the entire schema of the database and would serve much in the
same capacity as an OMG Interface Repository. This chapter includes a Smalltalk
binding for the meta object interfaces defined in Chapter 2.

In such a repository, the meta objects that represent the schema of the database may be
programmatically accessed and modified by Smalltalk applications, through their stan-
dard interfaces. One such application, a binding generator, may be used to generate
Smalltalk class and method skeletons from the meta objects. This binding generator
would resolve the type-class mapping choices that are inherent in the ODMG Small-
talk binding.

The information in the meta objects is also sufficient to regenerate the ODL declara-
tions for the portions of the schema that they represent. The relationships between
these components are illustrated in Figure 6-1. A conforming implementation must
support the Smalltalk output of this binding process; it need not provide automated
tools.

6.1.3 Mapping the ODMG Object Model into Smalltalk
Although Smalltalk provides a powerful data model that is close to the one presented
in Chapter 2, it remains necessary to precisely describe how the concepts of the ODMG
Object Model map into concrete Smalltalk constructions.

6.1.3.1 Object and Literal

An ODMG object type maps into a Smalltalk class. Since Smalltalk has no distinct
notion of literal objects, both ODMG objects and ODMG literals may be implemented
by the same Smalltalk classes.

1. OMG Document 94-11-8, November 16, 1994.

6.1 Introduction 3
Figure 6-1. Smalltalk Language Binding

6.1.3.2 Relationship

This concept is not directly supported by Smalltalk and must be implemented by
Smalltalk methods that support a standard protocol. The relationship itself is typically
implemented either as an object reference (one-to-one relation) or as an appropriate
Collection subclass (one-to-many, many-to-many relations) embedded as an instance
variable of the object. Rules for defining sets of accessor methods are presented that
allow all relationships to be managed uniformly.

6.1.3.3 Names

Objects in Smalltalk have a unique object identity, and references to objects may
appear in a variety of naming contexts. The Smalltalk system dictionary contains
globally accessible objects that are indexed by symbols that name them. A similar
protocol has been defined on the Database class for managing named persistent objects
that exist within the database.

6.1.3.4 Extents

Extents are not supported by this binding. Instead, users may use the database naming
protocol to explicitly register and access named Collections.

ODL declarations

Object instances

ODL
compiler

��������
��������

�
�

��������
��������

��������
���������
�������
��������������������������

�����
��������
����
����

�

��
��
��
��
��
��

����
�����
�������
����
����

�

����������
����������
����������
����������
����������

�
�
��

Regeneration

Generation

Class objectsMeta objects
Language

binding

ClassType

4 ODMG Smalltalk Binding
6.1.3.5 Keys

Key declarations are not supported by this binding. Instead, users may use the database
naming protocol to explicitly register and access named Dictionaries.

6.1.3.6 Implementation

Everything in Smalltalk is implemented as an object. Objects in Smalltalk have
instance variables that are private to the implementations of their methods. An instance
variable refers to a single Smalltalk object, the class of which is available at runtime
through the class method. This instance object may itself refer to other objects.

6.1.3.7 Collections

Smalltalk provides a rich set of Collection subclasses, including Set, Bag, List, Dictio-
nary, and Array classes. Where possible, this binding has chosen to use existing
methods to implement the ODMG Collection interfaces. Unlike statically typed
languages, Smalltalk collections may contain heterogeneous elements whose type is
only known at runtime. Implementations utilizing these collections must be able to
enforce the homogeneous type constraints of ODL.

6.1.3.8 Database Administration

Databases are represented by instances of Database objects in this binding, and a
protocol is defined for creating databases and for connecting to them. Some operations
regarding database administration are not addressed by this binding and represent
opportunities for future work.

6.2 Smalltalk ODL

6.2.1 OMG IDL Binding Overview
Since the Smalltalk/ODL binding is based upon the OMG Smalltalk/IDL binding, we
include here some descriptions of the important aspects of the IDL binding that are
needed in order to better understand the ODL binding that follows. These descriptions
are not intended to be definitions of these aspects, however, and the reader should
consult the OMG binding document directly for the actual definitions.

6.2.1.1 Identifiers

IDL allows the use of underscore characters in its identifiers. Since underscore char-
acters are not allowed in all Smalltalk implementations, the Smalltalk/IDL binding
provides a conversion algorithm. To convert an IDL identifier with underscores into a
Smalltalk identifier, remove the underscore and capitalize the following letter (if it
exists):

6.2 Smalltalk ODL 5
month_of_year
in IDL, becomes in Smalltalk:

monthOfYear

6.2.1.2 Interfaces

Interfaces define sets of operations that an instance supporting that interface must
possess. As such, interfaces correspond to Smalltalk protocols. Implementors are free
to map interfaces to classes as required to specify the operations that are supported by
a Smalltalk object. In the IDL binding, all objects that have an IDL definition must
implement a CORBAName method that returns the fully scoped name of an interface
that defines all of its IDL behavior.

anObject CORBAName

6.2.1.3 Objects

Any Smalltalk object that has an associated IDL definition (by its CORBAName
method) may be a CORBA object. In addition, many Smalltalk objects may also repre-
sent instances of IDL types as defined below.

6.2.1.4 Operations

IDL operations allow zero or more in parameters and may also return a functional
result. Unlike Smalltalk, IDL operations also allow out and inout parameters to be
defined, which allow more than a single result to be communicated back to the caller
of the method. In the Smalltalk/IDL binding, holders for these output parameters are
passed explicitly by the caller in the form of objects that support the CORBAParameter
protocol (value, value:).

IDL operation signatures also differ in syntax from that of Smalltalk selectors, and the
IDL binding specifies a mapping rule for composing default selectors from the opera-
tion and parameter names of the IDL definition. To produce the default Smalltalk oper-
ation selector, begin with the operation name. If the operation has only one parameter,
append a colon. If the operation has more than one parameter, append a colon and then
append each of the second to last parameter names, each followed by colon. The
binding allows default selectors to be explicitly overridden, allowing flexibility in
method naming.

current();
days_in_year(in ushort year);
from_hmstz(in ushort hour,

ushort minute,
in float second,
in short tz_hour,
in short tz_minute);

in IDL, become in Smalltalk:

6 ODMG Smalltalk Binding
current
daysInYear:
fromHmstz:minute:second:tzHour:tzMinute:

6.2.1.5 Constants

Constants, Exceptions, and Enums that are defined in IDL are made available to the
Smalltalk programmer in a global dictionary CORBAConstants, which is indexed by the
fully qualified scoped name of the IDL entity.

const Time_Zone USpacific = -8;
would be accessed by Smalltalk:

(CORBAConstants at: #’::Time::USpacific)

6.2.1.6 Types

Since, in Smalltalk, everything is an object, there is no separation of objects and
datatypes as exist in other hybrid languages such as C++. Thus, it is necessary for some
Smalltalk objects to fill dual roles in the binding. Since some objects in Smalltalk are
more natural in this role than others, we will describe the simple type mappings first.

Simple Types

IDL allows several basic datatypes that are similar to literal valued objects in Small-
talk. While exact type-class mappings are not specified in the IDL binding for tech-
nical reasons, the following mappings comply:

• short, unsigned short, long, unsigned long—An appropriate Integer subclass
(SmallInteger, LargePositiveInteger, LargeNegativeInteger, depending upon the
value)

• float, double—Float and Double, respectively
• char—Character
• boolean—The Boolean values true and false
• octet — SmallInteger
• string—An appropriate String subclass
• any—Object (any class that supports CORBAName)

Compound Types

IDL has a number of data structuring mechanisms that have a less intuitive mapping
to Smalltalk. The list below describes the implicit bindings for these types. Implemen-
tors are also free to provide explicit bindings for these types that allow other Smalltalk
objects to be used in these roles. These explicit bindings are especially important in the
ODL binding since the various Collections have an object-literal duality that is not
present in IDL (e.g., ODL list sequences also have a List interface).

6.2 Smalltalk ODL 7
• Array—An appropriate Array subclass
• Sequence—An appropriate OrderedCollection subclass
• Structure—Implicit: A Dictionary containing the fields of the structure keyed

by the structure fields as Symbols
• Structure—Explicit: A class supporting accessor methods to get and set the

structure fields
• Union—Implicit: Object (any class that supports CORBAName)
• Union—Explicit: A class that supports the CORBAUnion protocol (discrimina-

tor, discriminator:, value, and value: methods)
• Enum—A class that supports the CORBAEnum protocol (=, <, > methods).

Implementations must ensure that the correct ordering is maintained and that
instances of different enumeration types cannot be compared.

Binding Examples

union Number switch(boolean) {
case TRUE: long integerValue;
case FALSE: float realValue;
};

struct Point{Number x; Number y;};
The implicit bindings for the above would allow a Point to be represented by a Dictio-
nary instance containing the keys #x and #y and values that are instances of Integer or
Float:

aPoint := Dictionary with: #x -> 452 with: #y -> 687.44
Alternatively, the binding allows the Smalltalk class Point to represent the struct Point{}
because it implements the selectors x, x:, y, and y:.

enum Weekday{Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Satur-
day};

the Smalltalk values for Weekday enumerations would be provided by the implementa-
tion and accessed from the CORBAConstants global dictionary, as in:

(CORBAConstants at: #’::Date::Wednesday) >
(CORBAConstants at: #’::Date::Tuesday)

6.2.1.7 Exceptions

IDL exceptions are defined within modules and interfaces, and are referenced by the
operation signatures that raise them. Each exception may define a set of alternative
results that are returned to the caller should the exception be raised by the operation.
These values are similar to structures, and Dictionaries are used to represent exception
values.

exception InvalidDate{};
would be raised by the following Smalltalk:

(CORBAConstants at: #’::DateFactory::InvalidDate’)
CORBARaiseWith: Dictionary new

8 ODMG Smalltalk Binding
6.2.2 Smalltalk ODL Binding Extensions
This section describes the binding of ODMG ODL to Smalltalk. ODL provides a
description of the database schema as a set of interfaces, including their attributes, rela-
tionships, and operations. Smalltalk implementations consist of a set of object classes
and their instances. The language binding provides a mapping between these domains.

6.2.2.1 Interfaces and Classes

In ODL, interfaces are used to represent the abstract behavior of an object, and classes
are used to model the abstract state of objects. Both types may be implemented by
Smalltalk classes. In order to maintain the independence of ODMG ODL and OMG
IDL type bindings, all uses of the method CORBAName in the IDL binding are replaced
by the method ODLName in this definition. This method will return the name of the
ODL interface or class that is bound to the object in the schema repository.

aDate ODLName

returns the string '::Date', which is the name of its ODL interface. Similarly, all uses of
the CORBAConstants dictionary for constants, enums, and exceptions will be replaced
by a global dictionary named ODLConstants in this definition. For example:

(ODLConstants at: #'::Date::Monday')

is a Weekday enum,

(ODLConstants at: #'::Time::USpacific')

equals –8, and

(ODLConstants at: #'::DateFactory::InvalidDate')

is an exception.

6.2.2.2 Attribute Declarations

Attribute declarations are used to define pairs of accessor operations that get and set
attribute values. Generally, there will be a one-to-one correspondence between
attributes defined within an ODL class and instance variables defined within the corre-
sponding Smalltalk class, although this is not required. ODL attributes define the
abstract state of their object when they appear within class definitions. When attributes
appear within interface definitions, as in IDL they are merely a convenience mecha-
nism for introducing get and set accessing operations.

For example:

attribute Enum Rank {full, associate, assistant} rank;

yields Smalltalk methods:

rank
rank: aProfessorRank

6.2 Smalltalk ODL 9
6.2.2.3 Relationship Declarations

Relationships define sets of accessor operations for adding and removing associations
between objects. As with attributes, relationships are a part of an object’s abstract
state. The Smalltalk binding for relationships results in public methods to form and
drop members from the relationship, plus public methods on the relationship target
classes to provide access and private methods to manage the required referential integ-
rity constraints. We begin the relationship binding by applying the Chapter 2 mapping
rule from ODL relationships to equivalent IDL constructions, and then illustrate with
a complete example.

Single-Valued Relationships

For single-valued relationships such as

relationship X Y inverse Z;

we expand first to the IDL attribute and operations:

attribute X Y;
void form_Y(in X target);
void drop_Y(in X target);

which results in the following Smalltalk selectors:

Y
formY:
dropY:
Y: "private"

For example, from Chapter 3:

interface Course {
...

relationship Professor is_taught_by
inverse Professor::teaches;

 ...
}

yields Smalltalk methods (on the class Course):

formIsTaughtBy: aProfessor
dropIsTaughtBy: aProfessor
isTaughtBy
isTaughtBy: "private"

Multivalued Relationships

For a multivalued ODL relationship such as

relationship set<X> Y inverse Z;

we expand first to the IDL attribute and operations:

10 ODMG Smalltalk Binding
readonly attribute set<X> Y;
void form_Y(in X target);
void drop_Y(in X target);
void add_Y(in X target);
void remove_Y(in X target);

which results in the following Smalltalk selectors:

Y
formY:
dropY:
addY: "private"
removeY: "private"

For example, from Chapter 3:

interface Professor {
...

relationship Set<Course> teaches
inverse Course::is_taught_by;

...
}

yields Smalltalk methods (on class Professor):

formTeaches: aCourse
dropTeaches: aCourse
teaches
addTeaches: aCourse "private"
removeTeaches: aCourse "private"

Finally, to form the above relationship, the programmer could write

| professor course |
professor := Professor new.
course := Course new.
professor formTeaches: course.

-or-
course formIsTaughtBy: professor.

6.2.2.4 Collections

Chapter 2 introduced several new kinds of Collections that extend the IDL sequence. The
following shows the Smalltalk method selector that this binding defines for each of the
Collection interfaces. Where possible, we have explicitly bound operations to
commonly available Smalltalk80 selectors when the default operation binding rules
would not produce the desired selector.

6.2 Smalltalk ODL 11
“interface Collection”
size “unsigned long cardinality()”
isEmpty “boolean is_empty()”
isOrdered “boolean is_ordered()”
allowsDuplicates “boolean allows_duplicates()”
add: anObject “void insert_element(...)”
remove: anObject “void remove_element(...)”
includes: anObject “boolean contains_element(...)”
createIterator: aBoolean “Iterator create_iterator(...)”
createBidirectionalIterator: aBoolean

 “BidirectionalIterator create_bidirectional_iterator(...)”
“interface Iterator”

isStable “boolean is_stable()”
atEnd “boolean at_end()”
reset “boolean reset()”
getElement “any get_element()”
nextPosition “void next_position()”
replaceElement: anAny “void replace_element(...)”

“interface BidirectionalIterator”
atBeginning “boolean at_beginning()”
previousPosition “void previous_position()”

“interface Set”
createUnion: aSet “Set create_union(...)”
createIntersection: aSet “Set create_intersection(...)”
createDifference: aSet “Set create_difference(...)”
isSubsetOf: aSet “boolean is_subset_of(...)”
isProperSubsetOf: aSet “boolean is_proper_subset_of(...)”
isSupersetOf: aSet “boolean is_superset_of(...)”
isProperSupersetOf: aSet “boolean is_proper_superset_of(...)”

“interface CollectionFactory”
new: aLong “Collection new_of_size(...)”

“interface Bag”
occurrencesOf: anAny “unsigned long occurrences_of(...)”
createUnion: aBag “Bag create_union(...)”
createIntersection: aBag “Bag create_intersection(...)”
createDifference: aBag “Bag create_difference(...)”

“interface List”
at: aULong put: anObject “void replace_element_at(...)”
removeElementAt: aULong “void remove_element_at(...)”
retrieveElementAt: aULong “any retrieve_element_at(...)”
add: anObject after: aULong “void insert_element_after(...)”
add: anObject before: aULong “void insert_element_before(.)”
addFirst: anObject “void insert_element_first(...)”
addLast: anObject “void insert_element_last(...)”
removeFirst “void remove_first_element()”
removeLast “void remove_last_element()”
first “any retrieve_first_element()”
last “any retrieve_last_element()”
concat: aList “List concat(...)”
append: aList “void append(...)”

12 ODMG Smalltalk Binding
“interface Array”
replaceElementAt: aULong element: anAnyObject

“void replace_element_at(...)”
removeElementAt: aULong “void remove_element_at(...)”
retrieveElementAt: aULong “any retrieve_element_at(...)”
resize: aULong “void resize(...)”

“interface Dictionary”
at: anObject put: anObject1 “void bind(...)”
removeKey: anObject “void unbind(...)”
at: anObject “any lookup(...)”
includesKey: anObject “boolean contains_key(...)”

6.2.2.5 Structured Literals

Chapter 2 defined structured literals to represent Date, Time, Timestamp, and Interval
values that must be supported by each language binding. The following section defines
the binding from each operation to the appropriate Smalltalk selector.

“interface Date”
year “ushort year()”
month “ushort month()”
day “ushort day()”
dayOfYear “ushort day_of_year()”
monthOfYear “Month month_of_year()”
dayOfWeek “Weekday day_of_week()”
isLeapYear “boolean is_leap_year()”
= aDate “boolean is_equal(...)”
> aDate “boolean is_greater(...)”
>= aDate “boolean is_greater_or_equal(...)”
< aDate “boolean is_less(...)”
<= aDate “boolean is_less_or_equal(...)”
isBetween: aDate and: aDate1 “boolean is_between(...)”
next: aWeekday “Date next(...)”
previous: aWeekday “Date previous(...)”
addDays: along “Date add_days(...)”
subtractDays: aLong “Date subtract_days(...)”
subtractDate: aDate “Date subtract_date(...)”

“interface DateFactory”
julianDate: aUShort

julianDay: aUShort1 “Date julian_date(...)”
calendarDate: aUShort

month: aUShort1
day: aUShort2 “Date calendar_date(...)”

isLeapYear: aUShort “boolean is_leap_year(...)”
isValidDate: aUShort

month: aUShort1
day: aUShort2 “boolean is_valid_date(...)”

daysInYear: aUShort “unsigned short days_in_year(...)”
daysInMonth: aUShort

month: aMonth “unsigned short days_in_month(...)”
today “Date current()”

6.2 Smalltalk ODL 13
“interface Interval”
day “ushort day()”
hour “ushort hour()”
minute “ushort minute()”
second “ushort second()”
millisecond “ushort millisecond()”
isZero “boolean is_zero()”
plus: anInterval “Interval plus(...)”
minus: anInterval “Interval minus(...)”
product: aLong “Interval product(...)”
quotient: aLong “Interval quotient(...)”
isEqual: anInterval “boolean is_equal(...)”
isGreater: anInterval “boolean is_greater(...)”
isGreaterOrEqual: anInterval “boolean is_greater_or_equal(...)”
isLess: anInterval “boolean is_less(...)”
isLessOrEqual: anInterval “boolean is_less_or_equal(...)”

“interface Time”
hour “ushort hour()”
minute “ushort minute()”
second “ushort second()”
millisecond “ushort millisecond()”
timeZone “Time_Zone time_zone()”
tzHour “ushort tz_hour()”
tzMinute “ushort tz_minute()”
= aTime “boolean is_equal(...)”
> aTime “boolean is_greater(...)”
>= aTime “boolean is_greater_or_equal(...)”
< aTime “boolean is_less(...)”
<= aTime “boolean is_less_or_equal(...)”
isBetween: aTime and: aTime1 “boolean is_between(...)”
addInterval: anInterval “Time add_interval(...)”
subtractInterval: anInterval “Time subtract_interval(...)”
subtractTime: aTime “Interval subtract_time(...)”

“interface TimeFactory”
defaultTimeZone “Time_Zone default_time_zone()”
setDefaultTimeZone “void setDefault_time_zone(...)”
fromHms: aUShort

minute: aUShort1
second: aFloat “Time from_hms(...)”

fromHmstz: aUShort
minute: aUShort1
second: aFloat
tzhour: aShort
tzminute: aShort1 “Time from_hmstz(...)”

current “Time current(...)”
“interface Timestamp”

getDate “Date get_date()”
getTime “Time get_time()”
year “ushort year()”
month “ushort month()”

14 ODMG Smalltalk Binding
day “ushort day()”
hour “ushort hour()”
minute “ushort minute()”
second “ushort second()”
millisecond “ushort millisecond()”
tzHour “ushort tz_hour(...)”
tzMinute “ushort tz_minute(...)”
plus: anInterval “Interval plus(...)”
minus: anInterval “Interval minus(...)”
isEqual: aTimestamp “boolean is_equal(...)”
isGreater: aTimestamp “boolean is_greater(...)”
isGreaterOrEqual: aTimestamp “boolean is_greater_or_equal(...)”
isLess: aTimestamp “boolean is_less(...)”
isLessOrEqual: aTimestamp “boolean is_less_or_equal(...)”
isBetween: aTimestamp

bStamp: aTimestamp1 “boolean is_between(...)”
“interface TimestampFactory”

current “Timestamp current()”
create: aDate aTime: aTime “Timestamp create(...)”

6.3 Smalltalk OML
The Smalltalk Object Manipulation Language (OML) consists of a set of method addi-
tions to the classes Object and Behavior, plus the classes Database and Transaction. The
guiding principle in the design of Smalltalk OML is that the syntax used to create,
delete, identify, reference, get/set property values, and invoke operations on a persis-
tent object should be no different from that used for objects of shorter lifetimes. A
single expression may thus freely intermix references to persistent and transient
objects. All Smalltalk OML operations are invoked by sending messages to appro-
priate objects.

6.3.1 Object Protocol
Since all Smalltalk objects inherit from class Object, it is natural to implement some of
the ODMG language binding mechanisms as methods on this class. The following text
defines the Smalltalk binding for the common operations on all objects defined in
Chapter 2.

“interface Object”
== anObject “boolean same_as(...)”
copy “Object copy()”
lock: aLockType “void lock(...)”
tryLock: aLockType “boolean try_lock(...)”

“interface ObjectFactory”
new “Object new()”

6.3 Smalltalk OML 15
6.3.1.1 Object Persistence

Persistence is not limited to any particular subset of the class hierarchy, nor is it deter-
mined at object creation time. A transient object that participates in a relationship with
a persistent object will become persistent when a transaction commit occurs. This
approach is called transitive persistence. Named objects (see “Database Names,” on
page 228) are the roots from which the Smalltalk binding’s transitive persistence
policy is computed.

6.3.1.2 Object Deletion

In the Smalltalk binding, as in Smalltalk, there is no notion of explicit deletion of
objects. An object is removed from the database during garbage collection if that
object is not referenced by any other persistent object. The delete() operation from
interface Object is not supported.

6.3.1.3 Object Locking

Objects activated into memory acquire the default lock for the active concurrency
control policy. Optionally, a lock can be explicitly acquired on an object by sending
the appropriate locking message to it. Two locking mode enumeration values are
required to be supported: read and write. The OMG Concurrency Service’s LockSet
interface is the source of the following method definitions.

To acquire a lock on an object that will block the process until success, the syntax
would be

anObject lock: aLockMode.

To acquire a lock without blocking, the syntax would be

anObject tryLock: aLockMode. "returns a boolean indicating
success or failure"

In these methods, the receiver is locked in the context of the current transaction. A
lockNotGrantedSignal is raised by the lock: method if the requested lock cannot be
granted. Locks are released implicitly at the end of the transaction, unless an option to
retain locks is used.

6.3.1.4 Object Modification

Modified persistent Smalltalk objects will have their updated values reflected in the
ODMS at transaction commit. Persistent objects to be modified must be sent the
message markModified. MarkModified prepares the receiver object by setting a write
lock (if it does not already have a write lock) and marking it so that the ODMS can
detect that the object has been modified.

anObject markModified

16 ODMG Smalltalk Binding
It is conventional to send the markModified message as part of each method that sets an
instance variable’s value. Immutable objects, such as instances of Character and Small-
Integer and instances such as nil, true, and false, cannot change their intrinsic values. The
markModified message has no effect on these objects. Sending markModified to a tran-
sient object is also a null operation.

6.3.2 Database Protocol
An object called a Database is used to manage each connection with a database. A
Smalltalk application must open a Database before any objects in that database are
accessible. A Database object may only be connected to a single database at a time;
however, a vendor may allow many concurrent Databases to be open on different data-
bases simultaneously.

“interface Database”
open: aString “void open(...)”
close “void close()”
bind: anObject name: aString “void bind(...)”
inbind: aString “Object unbind(...)”
lookup: aString “Object lookup(...)”
schema “Module schema()”

6.3.2.1 Opening a Database

To open a new database, send the open: method to an instance of the Database class.

database := Database new.
... set additional parameters as required ...
database open: aDatabaseName

If the connection is not established, a connectionFailedSignal will be raised.

6.3.2.2 Closing a Database

To close a database, send the close message to the Database.

aDatabase close

This closes the connection to the particular database. Once the connection is closed,
further attempts to access the database will raise a notConnectedSignal. A Database that
has been closed may be subsequently reopened using the open method defined above.

6.3.2.3 Database Names

Each Database manages a persistent name space that maps string names to objects or
collections of objects, which are contained in the database. The following paragraphs
describe the methods that are used to manage this name space. In addition to being
assigned an object identifier by the ODMS, an individual object may be given a name
that is meaningful to the programmer or end user. Each database provides methods for
associating names with objects and for determining the names of given objects. Named

6.3 Smalltalk OML 17
objects become the roots from which the Smalltalk binding’s transitive persistence
policy is computed.

The bind:name: method is used to name any persistent object in a database.

aDatabase bind: anObject name: aString

The lookup:ifAbsent: method is used to retrieve the object that is associated with the
given name. If no such object exists in the database, the absentBlock will be evaluated.

aDatabase lookup: aString ifAbsent: absentBlock

6.3.2.4 Schema Access

The schema of a database may be accessed by sending the schema method to a Database
instance. This method returns an instance of a Module that contains (perhaps
transitively) all of the meta objects that define the database’s schema.

6.3.3 Transaction Protocol
“interface Transaction”

begin “void begin()”
commit “void commit()”
abort “void abort()”
checkpoint “void checkpoint()”
isOpen “boolean isOpen()”
join “void join()”
leave “void leave()”

“interface TransactionFactory”
current “Transaction current()”

6.3.3.1 Transactions

Transactions are implemented in Smalltalk using methods defined on the class Trans-
action. Transactions are dynamically scoped and may be started, committed, aborted,
checkpointed, joined, and left. The default concurrency policy is pessimistic concur-
rency control (see “Object Locking,” on page 227), but an ODMS may support addi-
tional policies as well. With the pessimistic policy all access, creation, modification,
and deletion of persistent objects must be done within a transaction.

A transaction may be started by invoking the method begin on a Transaction instance.

aTransaction begin

A transaction is committed by sending it the commit message. This causes the transac-
tion to commit, writing the changes to all persistent objects that have been modified
within the context of the transaction to the database.

aTransaction commit

18 ODMG Smalltalk Binding
Transient objects are not subject to transaction semantics. Committing a transaction
does not remove transient objects from memory, nor does aborting a transaction
restore the state of modified transient objects. The method for executing block-scoped
transactions (below) provides a mechanism to deal with transient objects.

A transaction may also be checkpointed by sending it the checkpoint message. This is
equivalent to performing a commit followed by a begin, except that all locks are retained
and the transaction’s identity is preserved.

aTransaction checkpoint

Checkpointing can be useful in order to continue working with the same objects while
ensuring that intermediate logical results are written to the database.

A transaction may be aborted by sending it the abort message. This causes the transac-
tion to end, and all changes to persistent objects made within the context of that trans-
action will be rolled back in the database.

aTransaction abort

A transaction is open if it has received a begin but not a commit or an abort message.
The open status of a particular Transaction may be determined by sending it the isOpen
message.

aTransaction isOpen

A process thread must explicitly create a transaction object or associate itself with an
existing transaction object. The join message is used to associate the current process
thread with the target Transaction.

aTransaction join

The leave message is used to drop the association between the current process thread
and the target Transaction.

aTransaction leave

The current message is defined on the Transaction class and is used to determine the
transaction associated with the current process thread. The value returned by this
method may be nil if there is no such association.

Transaction current

6.3.3.2 Block-Scoped Transactions

A transaction can also be scoped to a Block to allow for greater convenience and integ-
rity. The following method on class Transaction evaluates aBlock within the context of
a new transaction. If the transaction commits, the commitBlock will be evaluated after
the commit has completed. If the transaction aborts, the abortBlock will be evaluated
after the rollback has completed. The abortBlock may be used to undo any side effects
of the transaction on transient objects.

6.4 Smalltalk OQL 19
Transaction perform: aBlock
onAbort: abortBlock
onCommit: commitBlock

Within the transaction block, the checkpoint message may be used without terminating
the transaction.

6.3.3.3 Transaction Exceptions

Several exceptions that may be raised during the execution of a transaction are defined:

• The noTransactionSignal is raised if an attempt is made to access persistent
objects outside of a valid transaction context.

• The inactiveSignal is raised if a transactional operation is attempted in the
context of a transaction that has already committed or aborted.

• The transactionCommitFailedSignal is raised if a commit operation is
unsuccessful.

6.4 Smalltalk OQL
Chapter 4 defined the Object Query Language. This section describes how OQL is
mapped to the Smalltalk language. The current Smalltalk OQL binding is a loosely
coupled binding modeled after the OMG Object Query Service Specification.

6.4.1 Query Class
Instances of the class Query have four attributes: queryResult, queryStatus, queryString,
and queryParameters. The queryResult holds the object that was the result of executing
the OQL query. The queryStatus holds the status of query execution. The queryString is
the OQL query text to be executed. The queryParameters contains variable-value pairs
to be bound to the OQL query at execution.

The Query class supports the following methods:

create: aQueryString params: aParameterList "returns a Query"
evaluate: aQueryString params: aParameterList "returns query result"
complete "returns enum complete"
incomplete "returns enum incomplete"

Instances of the Query class support the following methods:
prepare: aParameterList "no result"
execute: aParameterList "no result"
getResult "returns the query result"
getStatus "returns a QueryStatus"

The execute: and prepare: methods can raise the QueryProcessingError signal if an error
in the query is detected. The queryString may include parameters specified by the form
$variable, where variable is a valid Smalltalk integer. Parameter lists may be partially
specified by Dictionaries and fully specified by Arrays or OrderedCollections.

20 ODMG Smalltalk Binding
Example:

Return all persons older than 45 who weigh less than 150. Assume there exists a collec-
tion of people called AllPeople.

| query result |
query := Query

create: 'select name from AllPeople where age > $1 and weight < $2'
params: #(45 150).

query execute: Dictionary new.
[query getStatus = Query complete] whileFalse: [Processor yield].
result := query getResult.

To return all persons older than 45 that weigh less than 170, the same Query instance
could be reused. This would save the overhead of parsing and optimizing the query
again.

query execute: (Dictionary with: 2->170).
[query getStatus = Query complete] whileFalse: [Processor yield].
result := query getResult.

The following example illustrates the simple, synchronous form of querying an OQL
database. This query will return the bag of the names of customers from the same state
as aCustomer.

Query
evaluate: 'select c.name from AllCustomers c where c.address.state = $1'
params: (Array with: aCustomer address state)

6.5 Schema Access
Chapter 2 defined metadata that define the operations, attributes, and relationships
between the meta objects in a database schema. The following text defines the
Smalltalk binding for these interfaces.

“interface MetaObject”
name “attribute name”
name: aString
comment “attribute comment”
comment: aString
formDefinedIn: aDefiningScope “relationship definedIn”
dropDefinedIn: aDefiningScope
definedIn
definedIn: aDefiningScope

“interface Scope”
bind: aString value: aMetaObject “void bind(...)”
resolve: aString “MetaObject resolve(...)”
unBind: aString “MetaObject un_bind(...)”

“interface DefiningScope”
formDefines: aMetaObject “relationship defines”

6.5 Schema Access 21
dropDefines: aMetaObject
defines
addDefines: aMetaObject
removeDefines: aMetaObject
createPrimitiveType: aPrimitiveKind

“PrimitiveType create_primitive_type()”
createCollectionType: aCollectionKind

maxSize: anOperand
subType: aType “Collection create_collection_type(...)”

createOperand: aString “Operand create_operand(...)”
createMember: aString

memberType: aType “Member create_member(...)”
createCase: aString

caseType: aType
caseLabels: aCollection “UnionCase create_case(...)”

addConstant: aString
value: anOperand “Constant add_constant(...)”

addTypedef: aString alias: aType “TypeDefinition add_typedef(...)”
addEnumeration: aString

elementNames: aCollection “Enumeration add_enumeration(...)”
addStructure: aString

fields: anOrderedCollection “Structure add_structure(...)”
addUnion: aString

switchType: aType
cases: aCollection “Union add_union(...)”

addException: aString
result: aStructure “Exception add_exception(...)”

removeConstant: aConstant “void remove_constant(...)”
removeTypedef: aTypeDefinition “void remove_typedef(...)”
removeEnumeration: anEnumeration “void remove_enumeration(...)”
removeStructure: aStructure “void remove_structure(...)”
removeUnion: aUnion “void remove_union(...)”
removeException: anException “void remove_exception(...)”

“interface Module”
addModule: aString “Module add_module(...)”
addInterface: aString

inherits: aCollection “Interface add_interface(...)”
removeModule: aModule “void remove_module(...)”
removeInterface: anInterface “void remove_interface(...)”

“interface Operation”
formSignature: aParameter “relationship signature”
dropSignature: aParameter
signature
addSignature: aParameter
removeSignature: aParameter
formResult: aType “relationship result”
dropResult: aType
result
result: aType

22 ODMG Smalltalk Binding
formExceptions: anException “relationship exceptions”
dropExceptions: anException
exceptions
addExceptions: anException
removeExceptions: anException

“interface Exception”
formResult: aStructure “relationship result”
dropResult: aStructure
result
result: aStructure
formOperations: anOperation “relationship operations”
dropOperations: anOperation
operations
addOperations: anOperation
removeOperations: anOperation

“interface Constant”
formHasValue: anOperand “relationship hasValue”
dropHasValue: anOperand
hasValue
hasValue: anOperand
formType: aType “relationship type”
dropType: aType
type
type: aType
formReferencedBy: aConstOperand “relationship referencedBy”
dropReferencedBy: aConstOperand
referencedBy
addReferencedBy: aConstOperand
removeReferencedBy: aConstOperand
formEnumeration: anEnumeration “relationship enumeration”
dropEnumeration: anEnumeration
enumeration
enumeration: anEnumeration
value “any value(...)”

“interface Property”
formType: aType “relationship type”
dropType: aType
type
type: aType

“interface Attribute”
isReadOnly “attribute isReadOnly”
isReadOnly: aBoolean

“interface Relationship”
formTraversal: aRelationship “relationship traversal”
dropTraversal: aRelationship
traversal
traversal: aRelationship
getCardinality “Cardinality getCardinality(...)”

6.5 Schema Access 23
“interface TypeDefinition”
formAlias: aType “relationship alias”
dropAlias: aType
alias
alias: aType

“interface Type”
formCollections: aCollection “relationship collections”
dropCollections: aCollection
collections
addCollections: aCollection
removeCollections: aCollection
formSpecifiers: aSpecifier “relationship specifiers”
dropSpecifiers: aSpecifier
specifiers
addSpecifiers: aSpecifier
removeSpecifiers: aSpecifier
formUnions: aUnion “relationship unions”
dropUnions: aUnion
unions
addUnions: aUnion
removeUnions: aUnion
formOperations: anOperation “relationship operations”
dropOperations: anOperation
operations
addOperations: anOperation
removeOperations: anOperation
formProperties: aProperty “relationship properties”
dropProperties: aProperty
properties
addProperties: aProperty
removeProperties: aProperty
formConstants: aConstant “relationship constants”
dropConstants: aConstant
constants
addConstants: aConstant
removeConstants: aConstant
formTypeDefs: aTypeDefinition “relationship typeDefs”
dropTypeDefs: aTypeDefinition
typeDefs
addTypeDefs: aTypeDefinition
removeTypeDefs: aTypeDefinition

“interface PrimitiveType”
kind “attribute kind”
kind: aPrimitiveKind

“interface Interface”
formInherits: anInheritance “relationship inherits”
dropInherits: anInheritance
inherits

24 ODMG Smalltalk Binding
addInherits: anInheritance
removeInherits: anInheritance
formDerives: anInheritance “relationship derives”
dropDerives: anInheritance
derives
addDerives: anInheritance
removeDerives: anInheritance
addAttribute: aString attrType: aType “Attribute add_attribute(...)”
addRelationship: aString

relType: aType
relTraversal: aRelationship “Relationship add_relationship(...)”

addOperation: aString
opResult: aType
opParams: anOrderedCollection
opRaises: anOrderedCollection1 “Operation add_operation(...)”

removeAttribute: anAttribute “void remove_attribute(...)”
removeRelationship: aRelationship “void remove_relationship(...)”
removeOperation: anOperation “void remove_operation(...)”

“interface Inheritance”
formDerivesFrom: anInterface “relationship derivesFrom”
dropDerivesFrom: anInterface
derivesFrom
derivesFrom: anInterface
formInheritsTo: anInterface “relationship inheritsTo”
dropInheritsTo: anInterface
inheritsTo
inheritsTo: anInterface

“interface Class”
extents “attribute extents”
extents: anOrderedCollection
formExtender: aClass “relationship extender”
dropExtender: aClass
extender
extender: aClass
formExtensions: aClass “relationship extensions”
dropExtensions: aClass
extensions
addExtensions: aClass
removeExtensions: aClass

“interface Collection”
kind “attribute kind”
kind: aCollectionKind
formMaxSize: anOperand “relationship maxSize”
dropMaxSize: anOperand
maxSize
maxSize: anOperand
formSubtype: aType “relationship subtype”
dropSubtype: aType

6.5 Schema Access 25
subtype
subtype: aType
isOrdered “boolean isOrdered(...)”
bound “unsigned long bound(...)”

“interface Enumeration”
formElements: aConstant “relationship elements”
dropElements: aConstant
elements
addElements: aConstant
removeElements: aConstant

“interface Structure”
formFields: aMember “relationship fields”
dropFields: aMember
fields
addFields: aMember
removeFields: aMember
formExceptionResult: anException “relationship exceptionResult”
dropExceptionResult: anException
exceptionResult
exceptionResult: anException

“interface Union”
formSwitchType: aType “relationship switchType”
dropSwitchType: aType
switchType
switchType: aType
formCases: aUnionCase “relationship cases”
dropCases: aUnionCase
cases
addCases: aUnionCase
removeCases: aUnionCase

“interface Specifier”
name “attribute name”
name: aString
formType: aType “relationship type”
dropType: aType
type
type: aType

“interface Member”
formStructureType: aStructure “relationship structure_type”
dropStructureType: aStructure
structureType
structureType: aStructure

“interface UnionCase”
formUnionType: aUnion “relationship union_type”
dropUnionType: aUnion
unionType
unionType: aUnion

26 ODMG Smalltalk Binding
formCaseLabels: anOperand “relationship caseLabels”
dropCaseLabels: anOperand
caseLabels
addCaseLabels: anOperand
removeCaseLabels: anOperand

“interface Parameter”
parameterMode “attribute parameterMode”
parameterMode: aDirection
formOperation: anOperation “relationship operation”
dropOperation: anOperation
operation
operation: anOperation

“interface Operand”
formOperandIn: anExpression “relationship OperandIn”
dropOperandIn: anExpression
operandIn
operandIn: anExpression
dropValueOf: aConstant “relationship valueOf”
valueOf
valueOf: aConstant
formSizeOf: aCollection “relationship sizeOf”
dropSizeOf: aCollection
sizeOf
sizeOf: aCollection
formCaseIn: aUnionCase “relationship caseIn”
dropCaseIn: aUnionCase
caseIn
caseIn: aUnionCase
value “any value(...)”

“interface Literal”
literalValue “attribute literalValue”
literalValue: anAnyObject

“interface ConstOperand”
formReferences: aConstant relationship references”
dropReferences: aConstant
references
references: aConstant

“interface Expression”
operator “attribute operator”
operator: aString
formHasOperands: anOperand “relationship hasOperands”
dropHasOperands: anOperand
hasOperands
addHasOperands: anOperand
removeHasOperands: anOperand

 Chapter 7

Java Binding
7.1 Introduction
This chapter defines the binding between the ODMG Object Model (ODL and OML)
and the Java programming language as defined by the Java™ 2 Platform. It is designed
to be compatible with the OMG Persistence Service.

7.1.1 Language Design Principles
The ODMG Java binding is based on one fundamental principle: The programmer
should perceive the binding as a single language for expressing both database and
programming operations, not two separate languages with arbitrary boundaries
between them. This principle has several corollaries evident throughout the definition
of the Java binding in the body of this chapter:

• There is a single unified type system shared by the Java language and the
database; individual instances of these common types can be persistent or
transient.

• The binding respects the Java language syntax, meaning that the Java lan-
guage will not have to be modified to accommodate this binding.

• The binding respects the automatic storage management semantics of Java.
Objects will become persistent when they are referenced by other persistent
objects in the database. Additionally, database storage may be explicitly
managed by the application program.

Note that the Java binding provides persistence by reachability, like the ODMG Small-
talk binding (this has also been called transitive persistence). On database commit, all
objects reachable from database root objects are stored in the database.

7.1.2 Language Binding
The Java binding provides two ways to declare persistence-capable Java classes:

• Existing Java classes can be made persistence-capable.
• Java class declarations (as well as a database schema) may automatically be

generated by a preprocessor for ODMG ODL.

One possible ODMG implementation that supports these capabilities would be a post-
processor that takes as input the Java .class file (bytecodes) produced by the Java
compiler and produces new modified bytecodes that support persistence. Another

2 ODMG Java Binding
implementation would be a preprocessor that modifies Java source before it goes to
the Java compiler. Another implementation would be a modified Java interpreter.

We want a binding that allows all of these possible implementations. Because Java
does not have all hooks we might desire, and the Java binding must use standard Java
syntax, it is necessary to distinguish special classes understood by the database system.
These classes are called persistence-capable classes. They can have both persistent
and transient instances. Only instances of these classes can be made persistent.

Because a Java class definition does not contain all the object modeling information
required, it is necessary to augment the class definition with a property file, described
in Section 7.5. A class is persistence-capable if the class name or its package name is
specified in the property file (see Section 7.5) with the key-value persistent=capable.

7.1.3 Use of Java Language Features

7.1.3.1 Name Spaces and Interfaces

The ODMG Java API is defined in the package org.odmg. The entire API consists of
interfaces, rather than classes, so that it can be shared without change by all vendors.
In order to bootstrap the implementation, the ODMG vendor needs to provide an Imple-
mentation object that includes factories for ODMG implementation classes.1

This approach permits more than one ODMG implementation in the same JVM.
However, we require that all instances of each persistence-capable class belong to the
same implementation to allow for an efficient and practical implementation.

7.1.3.2 Implementation Bootstrap Object

The only vendor-dependent line of code required in an ODMG application is the one
that retrieves an ODMG implementation object from the vendor. The implementation
object implements the org.odmg.Implementation interface:

1. The use of an implementation object is new for this release; the previous release used a vendor-
dependent package that included classes for Transaction, Database, and OQLQuery. The change is back-
ward-compatible: Vendors may simultaneously support the former vendor-dependent package and the new
org.odmg package. In addition to allowing multiple ODMG implementations in a single Java Virtual
Machine, this release includes changes to align ODMG with the OMG Persistence Service.

7.1 Introduction 3
public interface Implementation {
public Transaction newTransaction(); // Create transaction object and

 // associate it with the current thread
public Transaction currentTransaction(); // Get current transaction for thread,

// or null if none
public Database newDatabase(); // Create database object
public OQLQuery newOQLQuery(); // Create query object
public DList newDList(); // Factories for Collections
public DBag newDBag();
public DSet newDSet();
public DArray newDArray();
public DMap newDMap();
public String getObjectId(Object obj); // Get a string representation of

 // the object’s identifier
public Database getDatabase(Object obj); // Get database of an object

}

7.1.3.3 Implementation Extensions

Implementations must provide the full function signatures for all the interface methods
specified in the chapter, but may also provide variants on these methods with different
types or additional parameters.

7.1.4 Mapping the ODMG Object Model into Java
The Java language provides a comprehensive object model comparable to the one
presented in Chapter 2. This section describes the mapping between the two models
and the extensions provided by the Java binding.

The following features are not yet supported by the Java binding: relationships,
extents, keys, and access to the metaschema.

7.1.4.1 Object and Literal

An ODMG object type maps into a Java object type. The ODMG atomic literal types
map into their equivalent Java primitive types. There are no structured literal types in
the Java binding.

7.1.4.2 Structure

The Object Model definition of a structure maps into a Java class.

7.1.4.3 Implementation

The Java language supports the independent definition of interface from implemen-
tation. Interfaces and abstract classes cannot be instantiated and therefore are not
persistence-capable.

4 ODMG Java Binding
7.1.4.4 Collection Interfaces

The collection objects described in Section 2.3.6 specify collection behavior, which
may be implemented using many different collection representations such as hash
tables, trees, chained lists, and so on. The Java binding provides the following inter-
faces and at least one implementation for each of these collection objects:

public interface DCollection extends java.util.Collection { ... }
public interface DSet extends DCollection, java.util.Set { ... }
public interface DBag extends DCollection { ... }
public interface DList extends DCollection, java.util.List { ... }
public interface DArray extends DCollection, java.util.List { ... }
public interface DMap extends java.util.Map { ... }

The iterator interface described in Section 2.3.6 is represented by the java.util.Iterator
interface.

7.1.4.5 Array

Java provides a syntax for creating and accessing a contiguous and indexable sequence
of objects, and a separate class, Vector, for extensible sequences. The ODMG Array
collection maps into either the primitive array type, the Java Vector class, or the ODMG
DArray interface, depending on the desired level of capability.

7.1.4.6 Relationship

The ODMG Java binding supports binary relationships. Two persistence-capable
classes are involved in the definition of a relationship. The class fields representing the
roles of the relationship are referred to as traversal paths.

The cardinality of a traversal path might be either one or many, identified by being just
a single reference or by being a collection type field. In the latter case, the element type
of the collection is specified in the property file (class name follows the keyword
refersTo). Beyond DCollection the interfaces DBag, DSet, DList, and DArray are also valid
attribute types for traversal paths of a many cardinality.

The traversal paths and cardinality of a relationship are declared within the Java
classes (normal class fields), while the inverse traversal path and the element type are
defined within a property file (see Section 7.5).

Examples:

A 1:n relationship between Department and Employee is represented in the Java code as
follows.

7.1 Introduction 5
public class Department
{

DCollection employees;
}
public class Employee
{

Department dept;
}

The corresponding property file looks like

; Properties for class Department
class Department
field employees
refersTo=Employee
inverse=dept
; Properties for class Employee
class Employee
field dept
refersTo=Department
inverse=employees

Assume a typed reference between Person and Address as follows:

public class Person
{

DBag homeAddresses;
}

The corresponding property looks like

; Properties for class Person
class Person
field homeAddresses
refersTo=Address

For a full description of the property file, see Section 7.5.

7.1.4.7 Extents

Extents are not yet supported by the Java binding. The programmer is responsible for
defining a collection to serve as an extent and writing methods to maintain it.

7.1.4.8 Keys

Key declarations are not yet supported by the Java binding.

6 ODMG Java Binding
7.1.4.9 Names

Objects may be named using methods of the Database interface defined in the Java
OML. The root objects of a database are the named objects; root objects and any
objects reachable from them are persistent.

7.1.4.10 Exception Handling

When an error condition is detected, an exception is thrown using the standard Java
exception mechanism. The following standard exception types are defined; some are
thrown from specific ODMG interfaces and are thus subclasses of ODMGException,
others may be thrown in the course of using persistent objects and are thus subclasses
of ODMGRuntimeException, and others are related to query processing and are just
subclasses of QueryException, which in turn is a subclass of ODMGException.

ClassNotPersistenceCapableException extends ODMGRuntimeException
Thrown when the implementation cannot make the object persistent because
of the type of the object.

DatabaseClosedException extends ODMGRuntimeException
Thrown when attempting to call an operation for which a database is not open
but is required to be open.

DatabaseIsReadOnlyException extends ODMGRuntimeException
Thrown when attempting to call a method that modifies a database that is
open read-only.

DatabaseNotFoundException extends ODMGException
Thrown when attempting to open a database that does not exist.

DatabaseOpenException extends ODMGException
Thrown when attempting to open a database that is already open.

LockNotGrantedException extends ODMGRuntimeException
Thrown if a lock could not be granted. (Note that time-outs and deadlock de-
tection are implementation-defined.)

NotImplementedException extends ODMGRuntimeException
Thrown when an implementation does not implement an operation or when
the underlying implementation does not support an operation.

ObjectDeletedException extends ODMGRuntimeException
Thrown when accessing an object that was deleted.

ObjectNameNotFoundException extends ODMGException
Thrown when attempting to get a named object whose name is not found.

7.2 Java ODL 7
ObjectNameNotUniqueException extends ODMGException
Thrown when attempting to bind a name to an object when the name is al-
ready bound to an existing object.

ObjectNotPersistentException extends ODMGRuntimeException
Thrown when deleting an object that is not persistent.

QueryInvalidException extends QueryException
Thrown if the query is not a valid OQL query and thus does not compile.

QueryParameterCountInvalidException extends QueryException
Thrown when the number of bound parameters for a query does not match the
number of placeholders.

QueryParameterTypeInvalidException extends QueryException
Thrown when the type of a parameter for a query is not compatible with the
expected parameter type.

TransactionAbortedException extends ODMGRuntimeException
Thrown when the database system has asynchronously terminated the user's
transaction due to a deadlock, resource failure, and so on. In such cases the
user's data is reset just as if the user had called Transaction.abort.

TransactionInProgressException extends ODMGRuntimeException
Thrown when attempting to call a method within a transaction that must be
called when no transaction is in progress.

TransactionNotInProgressException extends ODMGRuntimeException
Thrown when attempting to perform outside of a transaction an operation that
must be called when there is a transaction in progress.

7.2 Java ODL
This section defines the Java Object Definition Language, which provides the descrip-
tion of the database schema as a set of Java classes using Java syntax. Instances of
these classes can be manipulated using the Java OML.

7.2.1 Attribute Declarations and Types
Attribute declarations are syntactically identical to field variable declarations in Java
and are defined using standard Java syntax and semantics for class definitions.

The following table describes the mapping of the Object Model types to their
Java binding equivalents. Note that the primitive types may also be represented by

8 ODMG Java Binding
their class equivalents: Both forms are persistence-capable and may be used
interchangeably.

The binding maps each unsigned integer to the next larger signed type in Java. The
need for this arises only where multiple language bindings access the same database.
It is vendor-defined whether or not an exception is raised if truncation or sign problems
occur during translations. The Java mappings for the object model types Enum and
Interval are not yet defined by the standard.

7.2.2 Relationship Traversal Path Declarations
Traversal paths of relationships are declared by simple instance field declarations
within the Java language, which are classified by entries in the corresponding property
file. For more details, see Section 7.1.4.6 and Section 7.5.3.

Object Model Type Java Type Literal?
Long int (primitive), Integer (class) yes
Short short (primitive), Short (class) yes
Unsigned long long (primitive), Long (class) yes
Unsigned short int (primitive), Integer (class) yes
Float float (primitive), Float (class) yes
Double double (primitive), Double (class) yes
Boolean boolean (primitive), Boolean (class) yes
Octet byte (primitive), Integer (class) yes
Char char (primitive), Character (class) yes
String String yes
Date java.sql.Date yes
Time java.sql.Time yes
Timestamp java.sql.Timestamp yes
Set interface DSet no
Bag interface DBag no
List interface DList no
Array array type [] or Vector

 or interface DArray
no

Dictionary interface DMap no
Iterator java.util.Iterator no

7.3 Java OML 9
7.2.3 Operation Declarations
Operation declarations in the Java ODL are method declarations in Java.

7.3 Java OML
The guiding principle in the design of Java Object Manipulation Language (OML) is that the
syntax used to create, delete, identify, reference, get/set field values, and invoke methods on a
persistent object should be no different from that used for objects of shorter lifetimes. A single
expression may thus freely intermix references to persistent and transient objects. All Java OML
operations are invoked by method calls on appropriate objects.

7.3.1 Object Creation, Deletion, Modification, and Reference

7.3.1.1 Object Persistence

In the Java binding, persistence is not limited to any particular subset of the class hierarchy, nor
is it determined at object creation time. A transient Java object that is referenced by a persistent
Java object will automatically become persistent when the transaction is committed. This
behavior is called persistence by reachability.

Instances of classes that are not persistence-capable classes are never persistent, even if they are
referenced by a persistent object. An object-valued attribute whose type is not a persistence-
capable class is treated by the database system the same way as a transient attribute (see below).
A class is persistence-capable if the class name or its package name is specified in the property
file (see Section 7.5) with the key-value persistent=capable.

Nevertheless, it is possible to declare an attribute to be transient using the keyword
transient of the Java language. That means that the value of this attribute is not stored in the data-
base. Furthermore, reachability from a transient attribute will not give persistence to an object.
A field can be declared persistent even though it is declared transient in the Java language, by
using the property file (see Section 7.5) with the field section key-value transient=false. Simi-
larly, a field can be declared to be transient for the purposes of database storage by using the
field section key-value transient=true.

For example, a class Person with an attribute currentSomething that must not be persistent must
be declared as follows:

Java class in package com.xyz:

package com.xyz;
public class Person {

public String name;
public Something currentSomething;

}

10 ODMG Java Binding
Property file:

class com.xyz.Person
persistent=capable
field currentSomething
transient = true

When an object of class Person is loaded into memory from the database, the attribute
currentSomething is set (by Java) to the default value of its type.

On transaction abort, the value of a transient attribute can be either left unchanged or
set to its default value. The behavior is not currently defined by the standard.

Static fields are treated similarly to transient attributes. Reachability from a static field
will not give persistence to an object, and on transaction abort the value of a static field
can be either left unchanged or set to its default value.

7.3.1.2 Object Deletion

An object may be automatically removed from the database if that object is neither
named nor referenced by any other persistent object.

7.3.1.3 Object Modification

Modified persistent Java objects will have their updated fields reflected in the database
when the transaction in which they were modified is committed.

7.3.1.4 Object Names

A database application generally will begin processing by accessing one or more crit-
ical objects and proceeding from there. These objects are root objects, because they
lead to interconnected webs of other objects. The ability to name an object and retrieve
it later by that name facilitates this start-up capability. Names also provide persistence,
as noted earlier.

There is a single flat namescope per database; thus, all names in a particular database
are unique. A name is not explicitly defined as an attribute of an object. The operations
for manipulating names are defined in the Database interface in Section 7.3.6.

7.3.1.5 Object Locking

We support explicit locking using methods on the Transaction object.

7.3.2 Properties
The Java OML uses standard Java syntax for accessing attributes and relationships,
both of which are mapped to field variables.

7.3 Java OML 11
7.3.3 Operations
Operations are defined in the Java OML as methods in the Java language. Operations
on transient and persistent objects behave identically and consistently with the opera-
tional context defined by Java. This includes all overloading, dispatching, expression
evaluation, method invocation, argument passing and resolution, exception handling,
and compile-time rules.

7.3.4 Collection Interfaces
A conforming implementation must provide these collection interfaces:

• DSet
• DBag
• DList
• DArray
• DMap

An implementation may provide any number of instantiable classes to implement
representations of the various Collection interfaces. The ODMG collections are based
on the Java 2 collection interfaces. The ODMG collection classes implement all oper-
ations in the Java 2 collection interfaces.

The collection elements are of type Object. Subclasses of Object, such as class
Employee, must be converted when used as DCollection elements (Java converts them
automatically on insertion into a collection, but requires an explicit cast when
retrieved).

7.3.4.1 Standard Java Collection Interfaces

The ODMG collection interfaces extend java.util.Collection interface, which provides
some of the methods from Chapter 2. The signatures for add and remove are different
from Chapter 2 equivalents insert_element and remove_element.

7.3.4.2 Interface DCollection

public interface DCollection extends java.util.Collection
{

public Object selectElement(String predicate)
throws QueryInvalidException;

public java.util.Iterator select(String predicate) throws QueryInvalidException;
public DCollection query(String predicate) throws QueryInvalidException;
public boolean existsElement(String predicate)

throws QueryInvalidException;
}

12 ODMG Java Binding
7.3.4.3 Interface DSet

public interface DSet extends DCollection, java.util.Set
{ // Chapter 2 operations:

public DSet union(DSet otherSet); // Set create_union (...)
public DSet intersection(DSet otherSet); // Set create_intersection (...)
public DSet difference(DSet otherSet); // Set create_difference(...)
public boolean subsetOf(DSet otherSet); // boolean is_subset_of(...)
public boolean properSubsetOf(DSet otherSet);

// boolean is_proper_subset_of(...)
public boolean supersetOf(DSet otherSet); // boolean is_superset_of(...)
public boolean properSupersetOf(DSet otherSet);

 // boolean is_proper_superset_of(...)
}

Note that subsetOf is equivalent to containsAll from java.util.Collection.

The methods union, intersection, and difference are similar to the methods addAll,
retainAll, and removeAll from java.util.Collection, with the methods in ODMG returning
a new set, whereas the java.util.Collection versions modify the set.

7.3.4.4 Interface DBag

The method occurrences returns the number of times an object exists in the DBag, or
zero if it is not present in the DBag.

public interface DBag extends DCollection
{ // Chapter 2 operations:

public DBag union(DBag otherBag); // Bag create_union(...)
public DBag intersection(DBag otherBag); // Bag create_intersection(...)
public DBag difference(DBag otherBag); // Bag create_difference(...)
public int occurrences(Object obj);

}

The methods union, intersection, and difference are similar to the methods addAll,
retainAll, and removeAll from java.util.Collection, with the methods in ODMG returning
a new set, whereas the java.util.Collection versions modify the bag.

7.3.4.5 Interface DList

The beginning DList index value is zero, following the Java convention. The method
add that is inherited from java.util.Collection will insert the object at the end of the DList.

7.3 Java OML 13
public interface DList extends DCollection, java.util.List {
public DList concat(DList other); // List concat(...)

}

The Chapter 2 operations defined on List but not explicitly specified above can be
implemented using methods in the Java binding DList interface as follows:

Java binding method Chapter 2 operation

add(index + 1, obj) insert_element_after(index, obj)
add(index, obj) insert_element_before(index, obj)
add(0, obj) insert_element_first(obj)
add(obj) insert_element_last(obj)
remove(0) remove_first_element()
remove(theList.size() - 1) remove_last_element()
get(0) retrieve_first_element()
get(theList.size() - 1) retrieve_last_element()

7.3.4.6 Interface DArray

The Array type defined in Section 2.3.6.4 is implemented by Java arrays, which are
single-dimension and fixed-length, or by the Java class Vector, instances of which may
be resized, or by a class implementing the DArray interface, instances of which may be
queried and are otherwise compatible with other collection operations. The remove(int)
method shifts later elements back one slot to fill the gap, according to java.util.List. For
the Chapter 2 semantics, use the set method with the null value. An ODMG implemen-
tation must provide an implementation of array, Vector, and DArray.

public interface DArray extends DCollection, java.util.List
{

public void resize(int newSize); // void resize(...)
}

7.3.4.7 Interface DMap

The DMap interface provides the Dictionary object defined in Section 2.3.6.5. The
operations defined in Section 2.3.6.5 are provided by the respective methods (in
parentheses) in java.util.Map: bind(put), unbind(remove), lookup(get),
contains_key(containsKey).

public interface DMap extends java.util.Map {
}

java.util.Map.Entry implements the Association struct in Section 2.3.5.

14 ODMG Java Binding
7.3.5 Transactions
Transaction semantics are defined in the object model explained in Chapter 2.

Transactions can be started, committed, aborted, and checkpointed. It is important to
note that all access, creation, and modification of persistent objects and their fields
must be done within a transaction.

Transactions are implemented in the Java OML by objects that implement the Transac-
tion interface, defined as follows:

public interface Transaction {
public void join(); // Attaches caller’s thread to this existing Transaction;

 // any previous transaction is detached from thread
public void leave(); // Detaches caller’s thread from this Transaction,

 // without attaching another
public void begin(); // Starts (opens) a transaction.

 // Nested transactions are not currently supported
public boolean isOpen(); // Returns true if this transaction is open,

 // otherwise false
public void commit(); // Commits and closes a transaction
public void abort(); // Aborts and closes a transaction
public void checkpoint(); // Commits a transaction but retains locks and

// reopens transaction
public void lock(Object obj, int mode) // Lock an object

 throws LockNotGrantedException;
public boolean tryLock(Object obj, int mode);
public static final int READ = 1;
public static final int UPGRADE = 2;
public static final int WRITE = 4;

}

Before performing any database operations, a thread must explicitly create a transac-
tion object or associate (join) itself with an existing transaction object, and that trans-
action must be open (through a begin call). All subsequent operations by the thread,
including reads, writes, and lock acquisitions, are done under the thread’s current
transaction. A thread may only operate on its current transaction. For example, a Trans-
actionNotInProgressException is thrown if a thread attempts to commit, checkpoint, or
abort a transaction prior to joining itself to that transaction.

An object data management system (ODMS) might permit optimistic, pessimistic, or
other locking paradigms; ODMG does not specify this.

7.3 Java OML 15
Transactions must be explicitly created and started; they are not automatically started
on database open, upon creation of a Transaction object, or following a transaction
commit or abort.

Object instances that implement the Transaction interface are created using the ODMG
Implementation interface defined earlier. The creation of a new transaction object or a
begin call on a transaction object implicitly associates it with the caller’s thread.

The begin function starts a transaction. Calling begin multiple times on the same trans-
action object, without an intervening commit or abort, causes the exception Transaction-
InProgressException to be thrown on the second and subsequent calls. Operations
executed before a transaction has been opened, or before reopening after a transaction
is aborted or committed, have undefined results; these may raise a TransactionNotInPro-
gressException.

There are three ways in which threads can be used with transactions:

1. An application program may have exactly one thread doing database opera-
tions, under exactly one transaction. This is the simplest case, and it certainly
represents the vast majority of database applications today. Other application
instances on separate machines or in separate address spaces may access the
same database under separate transactions.

2. There may be multiple threads, each with its own separate transaction. This
is useful when writing a service accessed by multiple clients on a network.
The database system maintains ACID transaction properties just as if the
threads were in separate address spaces. Programmers must not pass objects
from one thread to another one that is running under a different transaction;
ODMG does not define the results of doing this. However, strings can
always be passed between threads, since they are immutable, and scalar data
such as integers can be passed around freely.

3. Multiple threads may share one or more transactions. When a transaction is
associated with multiple threads simultaneously, all of these threads are
affected by data operations or transaction operations (begin, commit, abort).
Using multiple threads per transaction is recommended only for sophisti-
cated programming, because concurrency control must be performed by the
programmer through Java synchronization or other techniques on top of the
ODMS’s transaction-based concurrency control.

Calling commit commits to the database all persistent object modifications within the
transaction and releases any locks held by the transaction. A persistent object modifi-
cation is an update of any field of an existing persistent object, or an update or creation
of a new named object in the database. If a persistent object modification results in a
reference from an existing persistent object to a transient object, the transient object is

16 ODMG Java Binding
moved to the database, and all references to it updated accordingly. Note that the act
of moving a transient object to the database may create still more persistent references
to transient objects, so its referents must be examined and moved as well. This process
continues until the database contains no references to transient objects, a condition that
is guaranteed as part of transaction commit.

Calling checkpoint commits persistent object modifications made within the transaction
since the last checkpoint to the database. The transaction retains all locks it held on
those objects at the time the checkpoint was invoked.

Calling abort abandons all persistent object modifications and releases the associated
locks.

In the current standard, transient objects are not subject to transaction semantics.
Committing a transaction does not remove from memory transient objects created
during the transaction, and aborting a transaction does not restore the state of modified
transient objects.

Read locks are implicitly obtained on objects as they are accessed. Write locks are
implicitly obtained as objects are modified.

Calling lock upgrades the lock on the given object to the given level, if it is not already
at or above that level. It throws LockNotGrantedException if it cannot be granted. The
method tryLock is the same as lock except it returns a boolean indicating whether the
lock was granted instead of generating an exception.

Transaction objects are not long-lived (beyond process boundaries) and cannot be
stored in a database. This means that transaction objects may not be made persistent
and that the notion of long transactions is not defined in this specification.

In order for a Transaction object to be begun, a Database object must be open. If no Data-
base is open when attempting to begin a Transaction, DatabaseClosedException is thrown.
During the processing of a Transaction, if any operation is executed on a Database object,
that Database object is said to be bound to that Transaction. A Database object may be
bound to any number of Transactions. Any Database objects that are bound to any open
Transaction objects must remain open until all such Transaction objects have completed
(via either commit or rollback). If a close method is called on a bound Database object,
TransactionInProgressException is thrown and the Database object remains open.

7.3.6 Database Operations
The predefined interface Database represents a database.

7.3 Java OML 17
public interface Database {
// Access modes
public static final int NOT_OPEN = 0;
public static final int OPEN_READ_ONLY = 1;
public static final int OPEN_READ_WRITE = 2;
public static final int OPEN_EXCLUSIVE = 3;

public void open(String name, int accessMode) throws ODMGException;
// Opens database using the name and access mode specified.

public void close() throws ODMGException;
public void bind(Object object, String name)// bind a name to an object

throws ObjectNameNotUniqueException;
public Object lookup(String name) // look an object up by name

throws ObjectNameNotFoundException;
public void unbind(String name) // disassociate name

throws ObjectNameNotFoundException;
public void makePersistent(Object object);
public void deletePersistent(Object object);

}

The database object, like the transaction object, is transient. Databases cannot be
created programmatically using the Java OML defined by this standard. Databases
must be opened before starting any transactions that use the database and closed after
ending these transactions.

To open a database, use the open method, which takes the name of the database as its
argument. This locates the named database and makes the appropriate connection to it.
You must open a database before you can access objects in that database. Attempts to
open a database when it has already been opened will result in the throwing of the
exception DatabaseOpenException. A DatabaseNotFoundException is thrown if the data-
base does not exist. Some implementations may throw additional exceptions that are
also derived from ODMGException. Extensions to the open method will enable some
implementations to support default database names and/or implicitly open a default
database when a database session is started. Implementations may support opening
logical as well as physical databases. Some may also support being connected to
multiple databases at the same time.

To close a database, use the close method, which does appropriate cleanup on the
named database connection. After you have closed a database, further attempts to
access objects in the database will cause the exception DatabaseClosedException to be
thrown. Some implementations may throw additional exceptions that are also derived
from ODMGException.

18 ODMG Java Binding
The bind, unbind, and lookup methods allow manipulating names of objects. An object
is accessed by name using the lookup method. The same object may be bound to more
than one name. Binding a previously transient object to a name makes that object
persistent. The unbind method removes a name and any association to an object and
raises an exception if the name does not exist. For calls to bind, unbind, and lookup, a
transaction must be active. If calls are made to these methods outside any transaction,
TransactionNotInProgressException is thrown. The lookup method returns null if the spec-
ified name is bound to null and generates an exception if the name does not exist.

The makePersistent operation makes a transient object durable in the database. It must
be executed in the context of an open transaction. If the transaction in which this
method is executed commits, then the object is made durable. If the transaction aborts,
then the makePersistent operation is considered not to have been executed, and the target
object is again transient. ClassNotPersistenceCapableException is thrown if the imple-
mentation cannot make the object persistent because of the type of the object.

The deletePersistent operation deletes an object from the database. It must be executed
in the context of an open transaction. If the object is not persistent, then ObjectNotPer-
sistent is thrown. If the transaction in which this method is executed commits, then the
object is removed from the database. If the transaction aborts, then the deletePersistent
operation is considered not to have been executed, and the target object is again in the
database.

For calls to close, bind, lookup, and unbind, the corresponding Database object must be
open, that is an open must have been successfully performed on the Database object.
DatabaseClosedException is thrown otherwise.

7.4 Java OQL
The full functionality of the Object Query Language is available through the Java
binding. This functionality can be used through query methods on interface DCollection
or through queries using an OQLQuery object.

7.4.1 Collection Query Methods
The DCollection interface has a query method whose signature is

 DCollection query(String predicate) throws QueryInvalidException;

This function filters the collection using the predicate and returns the result. The pred-
icate is given as a string with the syntax of the where clause of OQL. The predefined
variable this is used inside the predicate to denote the current element of the collection
to be filtered.

For example, assuming that we have computed a set of students in the variable Students,
we can compute the set of students who take math courses as follows:

7.4 Java OQL 19
 DCollection mathematicians;
 mathematicians = Students.query(

"exists s in this.takes: s.section_of.name = \"math\" ");

The selectElement method has the same behavior except that it may only be used when
the result of the query contains exactly one element. The select method returns an Iter-
ator on the result of a query.

 If the predicate does not correspond to valid OQL syntax, QueryInvalidException will
be thrown.

7.4.2 The OQLQuery Interface
The interface OQLQuery allows the programmer to pass parameters to a query, execute
the query, and get the result.

public interface OQLQuery {
public void create(String query)

throws QueryInvalidException;
public void bind(Object parameter)

throws QueryParameterCountInvalidException,
 QueryParameterTypeInvalidException;

public Object execute()
throws QueryException;

}

In order to execute a query, the programmer has to create an OQLQuery object using an
Implementation object and call the create method with the query string. The create
method might throw the QueryInvalidException if the query could not be compiled prop-
erly. Some implementations may not want to compile the query before execute is
called. In this case QueryInvalidException can be thrown at this point since it is a
subclass of QueryException.

This is a generic interface. The parameters must be objects, and the result is an Object.
This means that you must use objects instead of primitive types (e.g., Integer instead of
int) for passing the parameters. Similarly, the returned data, whatever its OQL type, is
encapsulated into an object. For instance, when OQL returns an integer, the result is
put into an Integer object. When OQL returns a collection (literal or object), the result
is always a Java collection object of the same kind (for instance, a DList).

As usual, a parameter in the query is noted $i, where i is the rank of the parameter. The
parameters are set using the method bind. The ith variable is set by the ith call to the
bind method. If any of the $i are not set by a call to bind at the point execute is called,
QueryParameterCountInvalidException is thrown. If the argument is of the wrong type,
the QueryParameterTypeInvalidException is thrown. After executing a query, the param-

20 ODMG Java Binding
eter list is reset. Some implementations may throw additional exceptions that are also
derived from ODMGException.

Example:

Among the students who take math courses (computed in Section 7.4.1), we use OQL
to query the teaching assistants (TA) whose salary is greater than $50,000 and who are
students in math (thus belonging to the mathematicians collection). The result we are
interested in is the professors who are teaching these students. Assume there exists a
named set of teaching assistants called TA.

DCollection mathematicians;
DCollection assistedProfs;
Double x;
OQLQuery query;

 ...
 query = impl.newOQLQuery();

mathematicians = Students.query(
"exists s in this.takes: s.sectionOf.name = \"math\" ");

 query.create(
"select t.assists.taughtBy from t in TA where t.salary > $1 and t in $2 ");

x = new Double(50000.0);
query.bind(x); query.bind(mathematicians);
assistedProfs = (DBag) query.execute();

7.5 Property File
The Java binding uses one or more separate files to specify database-specific proper-
ties for Java persistence-capable classes and their fields. It is implementation-specific
what names these files have and exactly when the files are used.

7.5.1 General Format
• The configuration information consists of sections and associated key-value

pairs.
• The first section name element is a section header keyword. Currently

supported section header keywords are class and field. Elements following
the keyword specify the names of a package, a class, or a field. Field
sections are nested in class sections.

• A wild card is the character ‘*’, which stands for any class in any package.
• White space separates keywords, identifiers, and key-value pairs.

7.5 Property File 21
• All keys are lowercase with capitalized letters to mark word starts and to
avoid underscores. For example: stringEncoding.

• Each key in a section is unique. The value for a key consists of a single entry.
Values are associated with a key using the assign character (=). White space
may separate the key from the value.

• All names and keywords are case sensitive.
• Comments are all lines starting with a hash symbol ‘#’ or semicolon ‘;’.
• Entries for a particular class and key are located as follows. First, the exact

class name and key are searched. If the class is not found, or if the key is not
found in the class section, then the package is searched. If the key is not
found in the package, then subpackage names are removed from the end, and
the key is searched in the package. If the highest package name does not
contain the key, then the wild card package name is searched. If the wild
card package does not contain the key, then the default value for the key, if
any, is used. If a default value is not defined by this standard, then the value
is determined by the implementation.

• Implementations are free to add new section types and new properties. If
these are of a general nature, they should be submitted for adoption by the
ODMG. Default values are specified in the file using a wildcard technique.
If an implementation does not recognize a particular key-value pair, the
implementation must ignore it.

• There are two techniques supported for using non-ASCII characters in class
names and field names, as defined in ISO 10646. First, the file may begin
with the Byte Order Mark (BOM). If present, the remainder of the file
consists of Unicode-2 characters. If the file begins with anything but the
BOM, then the file contains utf-8 encoded Unicode characters.

7.5.2 Class Section
This section is used to describe properties of persistence-capable Java classes. There
is one section per Java class.

class className

where className is the fully qualified name (with package name) of a Java class.
Package names indicate that the property applies to all classes in that package. For
example, com.xyz.Collection indicates all classes in the package com.xyz.Collection, and
com.xyz indicates all packages in the com.xyz directory. Global defaults are specified
using the package name “*”.

22 ODMG Java Binding
Keywords

persistent

7.5.3 Field Section
This section is used to describe properties of individual fields in a persistence-capable
Java class.

field fieldName

where fieldName is the name of a field in the containing class.

Keywords

transient

refersTo

Values Default Description

capable,
not,
aware,
serialized

capable If a class is declared as persistent=capable, the database
system will store instances of the class. If a class is
declared as persistent=not, instances of this class will not be
stored in the database. If a class is declared as
persistent=aware, instances of this class may not be stored
in the database, but instances and static variables may
contain references to instances of persistence-capable
classes. If a class is declared as persistent=serialized, then
instances of this type will not be stored, but fields of this
type contained within persistence-capable classes will be
serialized and stored in the database with the containing
instance.

Values Default Description

true,
false

value from
transient
keyword in
class definition

This key only applies to fields of persistence-capable
classes. If false, this field becomes persistent and will
be stored in the database. If true, this field is not persis-
tent and will not be stored in the database.

Values Default Description

classname none If the field represents a traversal path of a relationship,
then classname is the name of the referenced class.

7.5 Property File 23
inverse

7.5.4 Example
Let’s assume we have the following Java class of which we would like to store
instances in the database. The field age is calculated by the application at runtime using
the date of birth and the current date. We do not want to store this field persistently in
the database.

Assume the class Person in package com.hotco.human_resources.

class Person {
String name;
Date birthdate;
short age;

}

The property file would be specified as follows.

; Default properties
class *
persistent=capable
; Properties for class Person
class com.hotco.human_resources.Person
field age
transient=true

7.5.5 Pseudo BNF
property_file ::= {class_section}
class_section ::= class full_class_name {property} {field_section}
full_class_name ::= package_name.class_name
full_class_name ::= package_name
full_class_name ::= *
field_section ::= field field_name {property}
property ::= identifier = identifier

Values Default Description

<inverse
field name>

none If the field represents a traversal path of a relationship,
then <inverse field name> is the field name within the ref-
erenced class. It applies only if it is a relationship.

24 ODMG Java Binding

Appendix A

Comparison with the OMG Object Model
A.1 Introduction
This appendix compares the ODMG Object Model outlined in Chapter 2 of this spec-
ification with the OMG Object Model as outlined in Chapter 4 of the OMG Architec-
ture Guide.

The bottom line is that the ODMG Object Model (ODMG/OM) is a superset of the
OMG Object Model (OMG/OM).

The subsections of this appendix discuss the purpose of the two models and how the
ODMG/OM fits into the component/profile structure defined by the OMG/OM, and re-
view the capability between the two models in the major areas defined by the OMG/
OM: types, instances, objects, and operations.

A.2 Purpose
The OMG/OM states that its primary objective is to support application portability.
Three levels of portability are called out: (1) design portability, (2) source code porta-
bility, and (3) object code portability. The OMG/OM focuses on design portability.
The ODMG/OM goes a step further—to source code portability. The OMG/OM dis-
tinguishes two other dimensions of portability: portability across technology domains
(e.g., a common object model across GUI, PL, and DBMS domains) and portability
across products from different vendors within a technology domain. The ODMG/OM
focuses on portability within the technology domain of object database management
systems. The ODMG standards suite is designed to allow application builders to write
to a single application programming interface (API), in the assurance that this API will
be supported by a wide range of vendors. The ODMG/OM defines the semantics of the
object types that make up this API. Subsequent chapters within the ODMG standard
define the syntactic forms through which this model is bound to specific programming
languages.

To offer real portability, a standard has to support a level of DBMS functionality rich
enough to meet the needs of the applications expected to use the standard. It cannot
define such a low-level API that real applications need to use functionality supplied
only by vendor-specific extensions to the API. The low-level, least-common-
denominator approach taken in the standards for relational data management has
meant that real applications need to use functionality supplied only by vendor-specific
extensions to the API. Several studies in the late 1980s that analyzed large bodies of

2 Comparison with the OMG Object Model
applications written against the relational API (SQL) showed that 30–40% of the
RDBMS calls in the application are actually “standard SQL”; the other 60–70% use
vendor-specific extensions. The result is that the relational standard does not in
practice deliver the source-code-level application portability that it promised. The
ODMG APIs have been designed to provide a much higher level of functionality and
therefore a much higher degree of application portability.

A.3 Components and Profiles
The OMG Object Model is broken into a set of components, with a distinguished “Core
Component” that defines objects and operations. The theory espoused by the OMG is
that each “technology domain” will assemble a set of these components into a profile.
Figure A-1 illustrates this. Two profiles are shown—the Object Request Broker (ORB)
profile and the object data management system (ODMS) profile.

The ORB profile includes the Core Component plus support for remote operations.
The ODMS profile includes the Core Component plus support for

• persistent objects
• properties (attributes and relationships)
• queries
• transactions

It also strengthens the core component definition of operations by including exception
returns.

To date, the only OMG/OM component that has been defined is the Core Component.
The additional functionality included in the ORB profile has not been formally speci-

Core

Remote
operations

Objects
Operations

Persistent objects

Attributes
w/exceptions

Relationships
Queries
Transactions

ODMS profile

ORB profile

Component

Figure A-1

A.3 Components and Profiles 3
fied as a set of named components. Nor are there OMG component definitions for the
functionality expected to be added by the ODMS profile. One of the reasons for mak-
ing the comparison between the OMG/OM (i.e., the Core Component) is that the mem-
bers of ODMG expect to submit definitions of each of the items in the bulleted list
above as candidate components and the sum of them as a candidate profile for object
database management systems. Since the submitting companies collectively represent
80+% of the commercially available products on the market, we assume that adoption
of an ODMS profile along the lines of that outlined in Chapter 2 will move through the
OMG process relatively quickly. The OMG/OM is outlined below, with indications
how the ODMG/OM agrees.

Types, instances, interfaces, and implementations:
• Objects are instances of types.
• A type defines the behavior and state of its instances.
• Behavior is specified as a set of operations.
• An object can be an immediate instance of only one type.
• The type of an object is determined statically at the time the object

is created; objects do not dynamically acquire and lose types.
• Types are organized into a subtype-supertype graph.
• A type may have multiple supertypes.
• Supertypes are explicitly specified; subtype-supertype relationships

between types are not deduced from signature compatibility of the
types.

Operations:
• Operations have signatures that specify the operation name, argu-

ments, and return values.
• Operations are defined on a single type—the type of their distin-

guished first argument—rather than on two types.
• Operations may take either literals or objects as their arguments.

Semantics of argument passing is pass by reference.
• Operations are invoked.
• Operations may have side effects.
• Operations are implemented by methods in the implementation por-

tion of the type definition.

The OMG/OM does not currently define exception returns on operations; it says that
it expects an exception-handling component defined outside of the core model. The
ODMG/OM does define exception returns to operations.

4 Comparison with the OMG Object Model
• Literal_type
• Atomic_literal
• Collection_literal
• Structured_literal

• Object_type
• Atomic_object
• Collection

Figure A-2

A.4 Type Hierarchy
The fact that the ODMG/OM is a superset of the OMG/OM can also be seen by looking
at the built-in type hierarchy defined by the two models. Figure A-2 shows the ODMG/
OM type hierarchy. The types whose names are shown in italics are those that are also
defined in the OMG/OM. As in Chapter 2, indenting is used to show subtype-super-
type relationships, for example, the type Collection is a subtype of the type Object_type.

The ODMG/OM is a richer model than the OMG/OM—particularly in its support for
properties and in its more detailed development of a subtype hierarchy below the types
Object and Literal. The only differences between the two models in the areas common
to them are two type names. The type that is called Literal in the ODMG/OM is called
Non-Object in the OMG/OM. Although the OMG/OM does not formally introduce a su-
pertype of the types Object and Non-Object, in the body of the document it refers to in-
stances of these two types as the set of all “denotable values” or “Dvals” in the model.
In the ODMG/OM, a common supertype for Object and Literal is defined. The instances
of type Object are mutable; they are therefore given OIDs in the ODMG/OM; although
the value of the object may change, its OID is invariant. The OID can therefore be used
to denote the object. Literals, by contrast, are immutable. Since the instances of a literal
type are distinguished from one another by their value, this value can be used directly
to denote the instance. There is no need to ascribe separate OIDs to literals.

In summary, the ODMG/OM is a clean superset of the OMG/OM.

A.5 The ORB Profile
A second question could be raised. One product category has already been approved
by the OMG—the ORB. To what extent are the noncore components implicit in that
product consistent or inconsistent with their counterpart noncore components in the
ODMG/OM? There is some divergence in literals, inheritance semantics, and opera-
tions—the latter because the ORB restricts in two key ways the semantics already de-
fined in the OMG core object model: object identity and the semantics of arguments
passed to operations. Those battles, however, are not ours. They are between the OMG
ORB task force and the OMG Object Model task force. The requirement placed on a
prospective ODMG task force is simply that the set of components included in the

A.6 Other Standards Groups 5
ODMS profile include the Core Component— objects and operations. This appendix
addresses that question.

A.6 Other Standards Groups
There are several standards organizations in the process of defining object models.

1. Application-specific standards groups that have defined an object model as a
basis for their work in defining schemas of common types in their applica-
tion domain, for example,

• CFI (electrical CAD)
• PDES/STEP (mechanical CAD)
• ODA (computer-aided publishing)
• PCTE (CASE)
• OSI/NMF (telephony)
• INCITS X3H6 (CASE)
• INCITS X3H4 (IRDS reference model)

2. Formal standards bodies working on generic object models, for example,
• ISO ODP
• INCITS X3H7 (Object Information Systems)
• INCITS X3T5.4 (managed objects)
• INCITS X3T3

It is our current working assumption that the OMG-promulgated interface definitions
will have sufficiently broad support across software vendors and hardware manufac-
turers that interface definitions put in the public domain through the OMG and sup-
ported by commercial vendors will develop the kind of de facto market share that has
historically been an important prerequisite to adoption by INCITS and ISO. Should
that prove not to be the case, the ODMG will make direct proposals to INCITS and ISO
once the member companies of ODMG and their customers have developed a base of
experience with the proposed API through use of commercial products that support
this API.

6 Comparison with the OMG Object Model

Biographies
Contact information, email addresses, and Web sites for the following people can be
found at http://www.odmg.org.

R.G.G. Cattell
Dr. R. G. G. “Rick” Cattell is a Distinguished Engineer in the Java Software Division
of Sun Microsystems, where he has served as lead architect on database connectivity
and instigated the Java Enterprise Edition Platform. He has worked for 15 years at Sun
Microsystems in both management and senior technical roles and for 10 years in re-
search at Xerox PARC and at Carnegie-Mellon University.

Dr. Cattell is best known for his contributions to database systems, particularly in
object-oriented databases and database user interfaces. He is the author of 50 papers
and 5 books in database systems and other topics. He was a founder of SQL Access,
the author of the world’s first monograph on object database systems, and the recipient
of the ACM Outstanding Dissertation Award. He served as chair of the ODMG.

Douglas K. Barry
Doug has worked in database technology for over twenty years, with an exclusive fo-
cus on the application of database technology for objects since 1987. As principal of
Barry & Associates, Doug has focused on helping clients make fully informed deci-
sions about the application of object technology. Doug is also the author of Object Da-
tabase Handbook: How to Select, Implement, and Use Object-Oriented Databases,
published by John Wiley & Sons, and XML Data Servers: An Infrastructure for Effec-
tively Using XML in Electronic Commerce, published by Barry & Associates, Inc.; and
was for many years the Databases columnist in Object Magazine and the ODBMS col-
umnist in Distributed Computing magazine. Doug holds a master’s degree in computer
science from the University of Minnesota. He served as the executive director of the
ODMG and the editor of Release 3.0.

Mark D. Berler
Mark is a Director of Architecture for Sapient Corporation, an e-services consultancy.
Based in Atlanta, Georgia, Mark is responsible for integrating Sapient's technical ser-
vices with business strategy and design services. Previously, Mark was a Senior Prin-
cipal and Associate of the Center for Advanced Technologies at American
Management Systems (AMS). As an architect at AMS, Mark specialized in the design,
development, and implementation of object-oriented frameworks and services for
large-scale distributed systems. Mark also implemented database infrastructures that
managed terabytes of data. Mark holds a master’s degree in computer science from the

2 Biographies
State University of New York at Albany. He served as the editor for the Object Model
and Object Specification Languages chapters.

Jeff Eastman
Jeff has over 25 years of experience in the computing field, more than half of which
has been focused in the area of object technology. He is Vice President of Architecture
and Technology at GRIC Communications, an Internet startup with a worldwide con-
sortium of ISP partners that provides federated roaming, IP telephony, and e-com-
merce services. He is also the founder and President of Windward Solutions, Inc., a
Silicon Valley consulting firm. Previously, he was a senior architect in HP’s Informa-
tion Architecture Group, where he helped to develop and prove many of the key tech-
nologies that are now standards of the Object Management Group and other
organizations. Dr. Eastman has held a variety of management positions in research and
development and has managed several object technology projects. He holds a Ph.D. in
electrical engineering from North Carolina State University. Jeff served as the vice
chair of the ODMG, the chair of the Object Model Working Group, and the editor of
the Smalltalk chapter.

David Jordan
David is a Consulting Engineer at Ericsson, where he is applying Java object databases
in mobile communicator devices. He helped engineer a small footprint ODMG-
compliant Java database for mobile devices, which was developed by POET Software.
He is also a member of the Java Data Objects expert group, which is standardizing
transparent persistence for Java within Sun's Community Process standardization
process. David has had columns in both the C++ Report and Java Report magazines
and authored a book titled C++ Object Databases. Prior to joining Ericsson, he was a
Distinguished Member of Technical Staff at Bell Laboratories, where he had been
designing C++ object models and database schemas for flat files, network, relational,
and object databases from 1984 through 1996. David served as the editor of both the
Java and C++ chapters.

Craig Russell
Craig is Product Architect at Sun Microsystems, where he is responsible for the
architecture of Java Blend, an object-to-relational mapping engine. During the past 30
years, he has been responsible for aspects of architecture, design, and support for
enterprise-scale transactional and database systems. He is the Specification Lead on
Java Data Objects, a Java Specification Request being managed via the Java
Community Process. Craig served as chair of the Java Working Group.

Biographies 3
Olaf Schadow
Olaf is a Presales Engineer with IONA, a provider of standards-based enterprise mid-
dleware solutions. Previously, he held positions with POET Software involving kernel
development and the design and implementation of POET’s ODMG C++ binding. He
was also a Product Manager and Director of Consulting Services at POET. Most re-
cently, Olaf worked on POET’s e-commerce prototype implementation using XML
technology. Olaf holds a master’s degree in computer science from the University for
Applied Science, Hamburg, Germany. He served as chair of the C++ Working Group.

Torsten Stanienda
Torsten is a Software Architect at DataDesign AG, an e-business company in Munich,
Germany. He was a Senior Engineer at Tech@Spree Software Technology GmbH,
Berlin, Germany, during the development of ODMG 3.0. Torsten holds a diploma in
computer science from the Technical University in Dresden. Torsten was a leading de-
veloper of Java Blend, a cooperative development between the Baan Company, Sun
Microsystems, and Tech@Spree. He has been involved in object-oriented software
technologies for more than 10 years. Torsten represented Baan in the ODMG, where
he served as chair of the OQL Working Group.

Fernando Velez
Fernando is the Vice President of Engineering with Arioso, an application service pro-
vider in the area of Web-enabled employee benefits. He has held positions as Chief
Scientist with Ardent Software, Director of Engineering with Unidata, Chief Architect
with O2 Technology, Research Engineer at INRIA, France, and at the Bull Research
Center in Grenoble, France. He was one of the founders of O2 Technology. Fernando
holds a Ph.D. in computer science from the Polytechnic National Institute of Grenoble,
France. He served as the editor of the OQL chapter.

4 Biographies

Index
Symbols
__ODMG_93__ 126

A
abort 40, 167, 218, 238, 239
accessor 117
address

of ANSI 10
of ODMG 10
of OMG 10

alias_type_iterator 182
ANSI 10

address 10
documents 10
X3H2 9, 10, 58
X3H4 249
X3H6 249
X3H7 10, 58, 249
X3J16 9, 10
X3J20 9, 201

any
ODL 71

architecture, of ODBMSs 3, 5
array 20, 25

C++ 125, 162
C++ builtin 162
Java 231, 238
ODL 71
OQL 98
Smalltalk 212

association 25
atomicity 52
attribute_iterator 182
attributes 11, 12, 18, 36, 37, 45, 46, 60,

61, 73, 74, 76, 77, 235
C++ example 129
declaration in C++ 142
modification

C++ example 142
ODL 71
OQL 100
Smalltalk 208, 222

avg 92, 102
axiom 116

B
bag 20, 23

C++ 160
Java 237
ODL 70
OQL 97
Smalltalk 211

begin 167, 217, 239
BidirectionalIterator

Smalltalk 211
bind 242
BNF 59, 60, 67
boolean 117

ODL 71

C
C++ 4, 11, 13, 14, 38, 39, 58, 59, 66

built-in types 122
embedding objects 143
future direction 126
inheritance 181
namespaces 126
object creation 139

example 140
ODL 121

schema definition example 194
OML 4, 121
operator

-> 141
new 140

OQL 175
pointers 122
preprocessor identifier 126
references 122
STL 166
transaction 166

C++ OML
example application 194

CAD Framework Initiative (CFI) 58, 249
char

ODL 70
checkpoint 167, 218, 238, 239
class 12, 13, 14, 15, 16, 47, 59, 60, 63,

67
ODL 68
Smalltalk 208, 224

class indicator 91

2 ODMG Index
close 169, 216, 241, 242
clustering 73
collection 20, 77, 110

array 20, 25
bag 20, 23
C++ class, definition 154
C++ mapping 125
conforming implementation 154
dictionary 20, 25
element 108
embedded 154
flatten 110
indexed expressions 107
Java 231, 236
list 20, 23
membership testing 102
of literals 156
of structured literals 156
OQL 101, 118
set 20, 22
Smalltalk 204, 210, 211, 224
types, different 156

collection_type_iterator 182
CollectionFactory 21

Smalltalk 211
commit 167, 217, 238, 239
Common Object Request Broker

Architecture
see CORBA

comparison 117
concatenation 108
concurrency control 50
consistency 52
const

ODL 68
constant

Smalltalk 222
constant_iterator 182
ConstOperand

Smalltalk 226
constructor 117
contact information 10
conversion 110, 119
CORBA 10, 39, 40, 41, 58, 67
count 92, 102
creation, of an object 17

D
d_ C++ name prefix 126
d_Alias_Type 181, 190
d_Association

class definition 163
d_Attribute 181, 190
d_Bag
class definition 160

d_Boolean 129
d_Char 129
d_Class 180, 185
d_Collection

C++ class definition 156
d_Collection_Type 180, 187
d_Constant 181, 193
d_Database 169

lookup_object 170
rename_object 170

d_Date
C++ class 132

d_Dictionary
class definition 162

d_Double 129
d_Enumeration_Type 180, 189
d_Error 126
d_Error_DatabaseClassMismatch 173
d_Error_DatabaseClassUndefined 140,

173
d_Error_DatabaseClosed 173
d_Error_DatabaseOpen 173
d_Error_DateInvalid 134, 173
d_Error_ElementNotFound 163
d_Error_IteratorDifferentCollections 165,

173
d_Error_IteratorExhausted 165, 173
d_Error_IteratorNotBackward 164, 173
d_Error_MemberIsOfInvalidType 138,

174
d_Error_MemberNotFound 138, 174
d_Error_NameNotUnique 170, 173
d_Error_None 173
d_Error_PositionOutOfRange 174
d_Error_QueryParameterCountInvalid

174, 177
d_Error_QueryParameterTypeInvalid

174, 176, 177
d_Error_RefInvalid 142, 174
d_Error_RefNull 153, 174
d_Error_TimeInvalid 136, 174
d_Error_TimestampInvalid 137, 174
d_Error_TransactionNotOpen 167, 174
d_Error_TransactionOpen 167, 174
d_Error_TypeInvalid 152, 174
d_Exception 181, 192
d_Extent 171
d_Float 129
d_Inheritance 181, 194
d_Interval

C++ class 131
d_Iterator 164

ODMG Index 3
C++ class 163
d_Keyed_Collection_Type 188
d_KeyedCollection_Type 180
d_List

class definition 160
d_list 166
d_Long 129
d_map 166
d_Meta_Object 180, 183
d_Module 180, 184
d_multimap 166
d_multiset 166
d_Object 150

d_activate 151
d_deactivate 151
mark_modified 141

d_Octet 129
d_Operation 181, 191
d_oql_execute 176
d_OQL_Query 176
d_Parameter 181, 193
d_Primitive_Type 180, 188
d_Property 181, 190
d_Ref

definition 151
delete_object 140

d_Ref_Any 153
d_Ref_Type 180, 187
d_Rel_List 138, 147, 161
d_Rel_Ref 138, 143
d_Rel_Set 138, 145
d_Relationship 181, 191
d_Scope 179, 183
d_Set

class definition 158
d_set 166
d_Short 129
d_String

C++ class 130
d_Structure_Type 180, 189
d_Time 134
d_TimeStamp 136
d_Transaction 167
d_Type 180, 184
d_ULong 129
d_UShort 129
d_Varray

C++ class definition 162
d_vector 166
data definition language (DDL) 57
data manipulation language (DML) 5, 57,

114
data model 3
database

access modes 241
administration 204
bind 55, 242
close 55, 169, 216, 242
Java 241
lookup 55, 169, 242
open 55, 167, 169, 216, 241, 242
schema 55
Smalltalk 216
unbind 55, 242

database operations 54
DatabaseFactory 54
date 26

Java 233
ODL 70
Smalltalk 212

DateFactory 27
Smalltalk 212

deadlock 18, 51
define 92
DefiningScope

Smalltalk 220
deletion

of object 235
dictionary 20, 25

C++ 162
ODL 70
Smalltalk 212

difference 109
distinct 87
distributed databases 2
distributed transactions 52
documents, from ANSI and OMG 10
double

ODL 70
durability 52

E
element 108, 110
ElementNotFound 173
enumeration

ODL 71
Smalltalk 225

except 92, 109
exception_iterator 182
exceptions 12, 39, 40, 43, 44

C++ 126
Java 231
nested handlers 40
Smalltalk 207, 219, 222

existential quantification 102
exists 92
EXPRESS 58

4 ODMG Index
expression 116
Smalltalk 226

EXTENDS 59, 63
EXTENDS relationship 15
extents 16, 47, 55, 60, 61, 66, 68, 171

C++ mapping 126
Java 231
ODL 68
Smalltalk 203

F
factory 17

CollectionFactory 21, 211
DatabaseFactory 54
DateFactory 27, 212
ObjectFactory 17, 21, 27, 29, 31,

214
TimeFactory 29, 213
TimestampFactory 31, 214
TransactionFactory 53, 217

first element 108
flattening 110
float

ODL 70
for all 92
future direction

C++ 126
Smalltalk 227

G
garbage collection 235
goals, of ODMG 2
grammar 116
group by 92, 105

H
history, of ODMG 8

I
identifiers, of an object 11, 17, 18, 31,

33, 35, 36, 55
IDL 4, 32, 38, 39, 41, 57, 58, 62, 202
inheritance

C++ 181
Smalltalk 224

inheritance_iterator 182
interface 12, 14, 15, 17, 19, 36, 40, 41,

46, 57, 59, 67
array 25
bag 23

BidirectionalIterator 22
collection 21, 23, 24, 25, 26
CollectionFactory 21
database 55
DatabaseFactory 54
date 27
DateFactory 27
dictionary 26
interval 28
iterator 22
list 24
object 17, 21, 27, 28, 29, 31
ObjectFactory 17, 21, 27, 29, 31
ODL 68
set 23
signatures 57
Smalltalk 205, 208, 223
TimeFactory 29
TimestampFactory 31
TransactionFactory 53

interface definition language
see IDL

intersect 92, 109
intersection 109
interval 28

ODL 70
Smalltalk 213

inverse traversal path 139, 209
ISA relationship 14, 15, 16
ISA relationship 63
ISO 52
isolation 52
isolation level 51
iterator 21

C++ 163
C++ example 165
Java 233
Smalltalk 211

J
Java 4, 11, 13, 14, 58, 59

class BagOfObject 236
class Database 241
class ListOfObject 236
class ODMGException 231
class ODMGRuntimeException 231
class OQLQuery 243
class SetOfObject 236
class Transaction 238
date 233
deletion 235
execute query 243
interface Array 238

ODMG Index 5
interface Bag 237
interface Collection 236
interface List 237
interface Set 237
ODL 233
OML 234
OQL 243
package 230
persistence 234
query 243
static fields 235
string 233
time 233
timestamp 233

join, between collections 88
join, threading 167, 218, 239

K
keyed_collection_type_iterator 182
keys 16, 19, 47, 60, 68

C++ 126
Java 231
ODL 68
Smalltalk 204

L
language binding 4

C++ 122
Java 229
Smalltalk 202

last element 108
late binding 90
late binding in queries 91
leave 167, 218, 239
lifetimes, of an object 17, 19
list 20, 23

C++ 160
first 108
Java 237
last 108
ODL 70
OQL 97, 110
Smalltalk 211

literal 11, 12, 13, 15, 18, 21, 31, 34, 35,
36, 49, 50, 75

atomic 31, 32
C++ mapping 123
collection 31, 32
Java 230
null 31, 34
Smalltalk 202, 226

structured 31, 33
locks 18, 50, 53, 54, 167, 215, 235, 239,

241
read 51, 239
upgrade 51, 239
write 51, 239

long
ODL 70

lookup 169, 242

M
mark_modified 143
markModified 215
max 92, 102
member

Smalltalk 225
meta objects 41, 42, 55

C++ 183
Smalltalk 220

metadata 41, 178, 220
method invoking in query 90
MIME 75, 76
min 92, 102
modifying objects 141
module

ODL 68
Smalltalk 221

Month 132

N
names

C++ mapping 126
Java 231
object 142, 235, 242
Smalltalk 203

names, of an object 17, 19
namespaces 126
null literal 34

O
object 11, 17, 20

C++ mapping 123
creation 17, 96, 139

C++ example 140
deletion 140, 215, 235

example 141
identifiers 11, 17, 18, 31, 33, 35,

36, 55
identity 85
Java 230

6 ODMG Index
lifetimes 17, 19
modification 141, 215, 235
names 17, 19, 142, 235, 242
persistence 215
references 141
Smalltalk 214
structure 17

object adaptor 254
Object Database Management Group

see ODMG
object database management system

see ODBMS
Object Definition Language 11, 57
object definition language

see ODL
object identifiers 73
Object Interchange Format 57, 72
Object Management Group

see OMG
object manager 253
object manipulation language

see OML
object model 3

C++ 123
C++ binding 122
Java 230
profile 4
Smalltalk 202

Object Model Task Force
see OMTF

object query language
see OQL

object request broker
see ORB

Object Services Task Force
see OSTF

Object Specification Languages 11
ObjectFactory 17, 21, 27, 29, 31

Smalltalk 214
octet

ODL 71
odbdump 80
odbload 81
ODBMS 1, 2

architecture 3, 5
as an object manager 253

ODL 4, 5, 11, 13, 17, 20, 26, 38, 39,
41, 50, 55, 57, 63, 67

any 71
array 71
attributes 71
bag 70
BNF 67
boolean 71

C++ 121, 127
char 70
class 68
const 68
date 70
design principles 121
dictionary 70
double 70
enumeration 71
extents 60, 68
float 70
interface 68
interval 70
Java 233
keys 60, 68
list 70
long 70
module 68
octet 71
relationships 61, 72
sequence 71
set 70
short 70
Smalltalk 204, 208
string 71
structure 71
time 70
timestamp 70
typedef 69
union 71
unsigned long 70
unsigned short 70

ODL grammar 67
ODMG 1

contact information 10
history 8
object model 3, 57, 245
participants 6
status 6

OIF 57, 72
OMG 9, 10, 32, 39, 40, 41, 57

address 10
architecture 4
Concurrency Control Service 51
CORBA, see CORBA
documents 10
IDL, see IDL
Interface Definition Language 32
object model 3, 5, 245
Object Transaction Service 52
OMTF, see OMTF
ORB, see ORB
OSTF, see OSTF

OML

ODMG Index 7
C++ 4, 121
embedding objects 143

Java 234
Smalltalk 214

OMTF 10, 248
see also OSTF

open 167, 169, 216, 241
operand

Smalltalk 226
operation_iterator 182
operations 11, 12, 39, 43, 44, 45, 57, 58,

59, 62
declaration in C++ 127

example 139
in C++ OML 150
Java 235
OQL 101
signature 58
Smalltalk 205, 221

operator
-> 141
new 140

OQL 4, 83
abbreviations 113
accessor 117
array 98
attribute extraction 100
avg 92
bag 97
BNF 115
C++ 175
class indicator 91
collection 101
concatenation 108
constructor 117
conversion 110
count 92
define 92
design principles 83
distinct 87
element 110
except 92
exists 92
expression 116
flattening 110
for all 92
grammar 116
group by 92, 105
intersect 92
Java 243
joins between collections 88
language definition 93
late binding 91
list 97, 110

max 92
method invoking 90
min 92
object identity 85
operations 101
operator composition 91
order by 107
path expression 87
polymorphism 90
query input and result 84
relationship traversal 87, 100
select from where 87, 103
set 97, 109, 110
set expression 118
Smalltalk 219
Smalltalk Query class 219
sort 92
structure 96
sum 92
typing an expression 111
union 92

ORB 10, 248, 251
binding 5

order by 107
OSTF 10, 253

see also OMTF

P
parameter

Smalltalk 226
parameter_iterator 182
participants, in the ODMG 6
path expressions in queries 87
PCTE 249
PDES/STEP 58, 249
persistence

by reachability 229, 234
transitive 229

persistence capable
declaration in C++ OML 150
Java 230

persistent objects 19, 51, 53, 55
C++ 139
C++ example 140
Java 234
referencing C++ transient objects 142
referencing Smalltalk transient objects

215
philosophy, of the ODMG 8
plan, of the ODMG 9
polymorphism and queries 90
portable applications 2
preprocessor identifier 126

8 ODMG Index
PrimitiveKind
Smalltalk 223

programming language 2, 5
properties 11, 12, 14, 15, 16, 19, 35, 45,

47, 58, 59, 60
declaration in C++ 142
Java 235
modification

Smalltalk 215
Smalltalk 222

property_iterator 182

Q
query 116, 243
query language

see OQL

R
read lock 51, 239
Ref

C++ class 141
class

validity after transaction commit
152

ref_type_iterator 183
references

behavior definition 142
with respect to object lifetime 142

referencing objects 141
relational DBMS 1, 246
relationship_iterator 183
relationships 11, 12, 14, 16, 35, 36, 38,

41, 45, 60, 61, 73, 143, 235
C++ example 138, 149
C++ mapping 125
cardinality "many" 38, 79
cardinality "one" 38, 78
declaration in C++ 137
EXTENDS 15, 63
ISA 14, 15, 16, 63
Java 231, 234
ODL 72
ODL BNF 61
OQL 100
Smalltalk 203, 209, 222
traversal paths 143

rename_object 126
rules 8

S
schema 5, 11, 41, 55, 57, 58, 63, 73

integration 58
scope

Smalltalk 220
select from where 87, 103, 118
sequence

ODL 71
serializability 50, 52
set 20, 22, 87

expression in OQL 118
Java 237
ODL 70
OQL 97, 109, 110
Smalltalk 211

set_object_name 126
short

ODL 70
Smalltalk 4, 11, 13, 14, 34, 38, 39, 58,

59
array 212
attribute declarations 208
attributes 222
bag 211
BidirectionalIterator 211
class 224
classes 208
collection 204, 211, 224
CollectionFactory 211
collections 210
compound types 206
constant 222
constants 206
ConstOperand 226
database 216
date 212
DateFactory 212
DefiningScope 220
design principles 201
dictionary 212
enumeration 225
exceptions 207, 222
expression 226
extents 203
future direction 227
garbage collection 215
inheritance 224
interface 205, 208, 223
interval 213
iterator 211
keys 204
list 211
literal 226
member 225
MetaObject 220
module 221

ODMG Index 9
names 203
object 214
object model 202
ObjectFactory 214
ODL 204, 208
OML 214
operand 226
operations 205, 221
OQL 219
parameter 226
PrimitiveKind 223
properties 222
relationship 222
relationship declarations 209
scope 220
set 211
simple types 206
specifier 225
structure 225
TimeFactory 213
TimestampFactory 214
TransactionFactory 217
type 206, 207, 223
TypeDefinition 223
union 225
UnionCase 225

Smalltalk80 201
sort 92
specifier

Smalltalk 225
SQL 12, 20, 26, 33, 34, 51, 58, 83, 87,

246
philosophical differences 91

Standard Template Library 158, 166
standards 1
standards groups 249
status, of ODMG standard 6
STEP/PDES 58, 249
STL 158, 166
string

Java 233
ODL 71

structure
C++ mapping 123
Java 230
ODL 71
OQL 96
Smalltalk 225

structure, of an object 17
subcollection 108
suggestion process 9
sum 92, 102

T
table type 33
time 29

C++ 134
Java 233
ODL 70
Smalltalk 213

Time_Zone 134, 135
TimeFactory 29

Smalltalk 213
timestamp 30

C++ 136
Java 233
ODL 70
Smalltalk 213

TimeStampFactory 31
TimestampFactory

Smalltalk 214
transaction 51

abort 53, 167, 218, 238, 239, 241
begin 53, 167, 217, 239
behavior of transient objects 168
C++ 166
C++ class 166
checkpoint 53, 167, 218, 238, 239,

241
commit 53, 167, 217, 238, 239, 240
current 239
distributed 52
exceptions 219
Java 238
join 53, 167, 218, 239
leave 53, 167, 218, 239
locks 167, 215
long transactions 168
Smalltalk 217

block-scoped 218
per thread 218

TransactionFactory 53
Smalltalk 217

transient objects 19, 52
behavior in transactions 168
C++ 139
C++ creation 140
C++ example 140
Java 234
referencing C++ persistent objects

142
referencing persistent Smalltalk objects

215
Smalltalk 215

transitive persistence 215

10 ODMG Index
traversal
inverse 139

traversal path 87, 143
definition 137
inverse 209
to-many 143, 203
to-one 143, 203

type 111
hierarchy 34, 248
object model types in Java 233
ODL 60
Smalltalk 206, 223
unsigned types in Java 233

type_iterator 183
typedef

ODL 69
TypeDefinition

Smalltalk 223

U
unbind 242
union 92, 109

ODL 71
Smalltalk 225

UnionCase
Smalltalk 225

universal quantification 101
unsigned long

ODL 70
unsigned short

ODL 70
upgrade lock 51, 239

V
value when object is deleted 152
VArray

C++ 162
Java 238

W
Weekday 132
write lock 51, 239

X
X3H2, see ANSI
X3H7, see ANSI
X3J16, see ANSI
X3J20, see ANSI
XA 52

