Matemàtiques - 4 ESO - Tema 3 - Equacions. Inequacions. Sistemes


Biquadrades

Resol les següents equacions biquadrades:

a) `x^4 - 10 x^2 + 9= 0`

    `t=x^2, t^2=x^4`

    `t^2 - 10 t + 9= 0`

    `t=(10\pmsqrt((-10)^2-4·1·9))/(2·1)`

    `t=(10\pmsqrt(100-36))/2`

    `t=(10\pmsqrt(64))/2`

    `t=(10\pm8)/2`

    `t_1 = (10+8)/2 = 18/2 = 9`

    `t_2 = (10-8)/2 = 2/2 = 1`

    `x^2 = 9 => x = sqrt(9) =\pm3`

    `x^2 = 1 => x = sqrt(1) =\pm1`

    `x_1 = 3, x_2 = -3, x_3 = 1, x_4 = -1`



b) `x^4 - 20 x^2 + 64= 0`

    `t=x^2, t^2=x^4`

    `t^2 - 20 t + 64= 0`

    `t=(20\pmsqrt((-20)^2-4·64))/(2·1)`

    `t=(20\pmsqrt(400-256))/2`

    `t=(20\pmsqrt(144))/2`

    `t=(20\pm12)/2`

    `t_1 = (20+12)/2 = 32/2 = 16`

    `t_2 = (20-12)/2 = 8/2 = 4`

    `x^2 = 16 => x = sqrt(16) =\pm4`

    `x^2 = 4 => x = sqrt(1) =\pm2`

    `x_1 = 4, x_2 = -4, x_3 = 2, x_4 = -2`



c) `x^4 - 7x^2 - 18= 0`

    `t=x^2, t^2=x^4`

    `t^2 - 7 t - 18= 0`

    `t=(7\pmsqrt((-7)^2-4·1·(-18)))/(2·1)`

    `t=(7\pmsqrt(49+72))/2`

    `t=(7\pmsqrt(121))/2`

    `t=(7\pm 11)/2`

    `t=(7 + 11)/2 = 9`

    `t=(7 - 11)/2 = -2` d'aquí no surt cap solució real

    Només té dues solucions

    `x^2 = 9 => x = sqrt(9) =\pm3`

    `x_1 = 3, x_2 = -3`



d) `x^4 - 16x^2 = 0`

    `t=x^2, t^2=x^4`

    `t^2 - 16 t = 0`

    `t·(t - 16) = 0`

    `t = 0`

    `t - 16 = 0`

    `t = 16`

    `x^2 = 0 => x = sqrt(0) = 0`

    `x^2 = 16 => x = sqrt(16) =\pm4`

    `x_1 = 0, x_2 = 4, x_3 = -4`



e) `3x^4 - 48 = 0`

    `t=x^2, t^2=x^4`

    `3t^2 - 48 = 0`

    `3t^2 = 48`

    `t^2 = 48/3`

    `t^2 = 16`

    `t = sqrt(16)`

    `t = \pm4`

    `x^2 = 4 => x = sqrt(4) = \pm2`

    `x^2 = -16 => x = sqrt(-16) = X`

    `x_1 = 2, x_2 = -2`



f) `x^6 - 9x^3 + 8 = 0`

    `t=x^3, t^2=x^6`

    `t^2 - 9 t + 8= 0`

    `t=(9\pmsqrt(9^2-4·1·8))/(2·1)`

    `t=(9\pmsqrt(81-32))/2`

    `t=(9\pmsqrt(49))/2`

    `t=(9\pm7)/2`

    `t_1 = (9+7)/2 = 16/2 = 8`

    `t_2 = (9-7)/2 = 2/2 = 1`

    `x^3 = 8 => x =` $\sqrt[3]{8} = 2$

    `x^3 = 1 => x =` $\sqrt[3]{1} = 1$

    `x_1 = 1, x_2 = 2`