Matemàtiques - 4 ESO - Tema 3 - Equacions. Inequacions. Sistemes


Resol les següents equacions: (MV)

a) `sqrt(2x-3) + 1= x`

    `sqrt(2x-3) = x - 1`

    `sqrt(2x-3)^2 = (x - 1)^2`

    `2x - 3 = x^2 - 2x + 1`

    `0 = -2x + 3 + x^2 - 2x + 1`

    `0 = x^2 - 4x + 4`

    `x=(4\pmsqrt((-4)^2-4·1·4))/(2·1)`

    `x=(4\pmsqrt(16-16))/2`

    `x=(4\pmsqrt(0))/2`

    `x=(4\pm 0)/2`

    `x =2`



b) `sqrt(x+6) - sqrt(x-2) = 2`

    `sqrt(x+6) = sqrt(x-2) + 2`

    `(sqrt(x+6))^2 = (sqrt(x-2) + 2)^2`

    `x+6 = (sqrt(x-2))^2 + 2· sqrt(x-2) · 2 + 2^2`

    `x + 6 = x - 2 + 4sqrt(x-2) + 4`

    `x + 6 - x + 2 - 4 = 4sqrt(x-2)`

    `4 = 4sqrt(x-2)`

    `4/4 = sqrt(x-2)`

    `1 = sqrt(x-2)`

    `1^2 = (sqrt(x-2))^2`

    `1 = x - 2`

    `1 + 2 = x `

    `x = 3`



c) `sqrt(5x+4) - 1 = 2x`

    `sqrt(5x+4) = 1 + 2x`

    `sqrt(5x+4)^2 = (1 + 2x)^2`

    `5x + 4 = 1^2 + 2·1·2x + (2x)^2`

    `0 = -5x - 4 + 1 + 4x + 4x^2`

    `0 = 4x^2 - x - 3`

    `x=(1\pmsqrt((-1)^2-4·4·(-3)))/(2·4)`

    `x=(1\pmsqrt(1+48))/8`

    `x=(1\pmsqrt(49))/8`

    `x=(1\pm 7)/8`

    `x_1 =(1+7)/8 = 1`

    `x_2 =(1-7)/8 = -6/8 = -3/4`



d) `sqrt(x+19) + 1 = sqrt(2x+4)`

    `sqrt(x+19) = sqrt(2x+4) - 1`

    `sqrt(x+19)^2 = (sqrt(2x+4) - 1)^2`

    `x+19 = sqrt(2x+4)^2 - 2·sqrt(2x+4) + 1^2)`

    `x+19 = (2x+4) - 2sqrt(2x+4) + 1`

    `x+19 = 2x+4 - 2sqrt(2x+4) + 1`

    `x+19 - 2x -4 -1 = - 2sqrt(2x+4)`

    `-x + 14 = - 2sqrt(2x+4)`

    `x - 14 = 2sqrt(2x+4)`

    `(x - 14)^2 = (2sqrt(2x+4))^2`

    `x^2 - 28x + 14^2 = 4 · (2x+4)`

    `x^2 - 28x + 196 = 8x + 16`

    `x^2 - 28x + 196 -8x - 16 = 0`

    `x^2 - 36x + 180 = 0`

    `x=(36\pmsqrt((-36)^2-4·180))/(2·1)`

    `x=(36\pmsqrt(1296-720))/2`

    `x=(36\pmsqrt(576))/2`

    `x=(36\pm 24)/2`

    `x_1 =(36+24)/2 = 30`

    `x_2 =(36-24)/2 = 6`



e) `3·sqrt(x-1) + 11 = 2x`

    `3sqrt(x-1) = 2x - 11`

    `(3sqrt(x-1))^2 = (2x - 11)^2`

    `9(x-1) = 4x^2 - 44x + 121`

    `9x - 9 = 4x^2 - 44x + 121`

    `0 = 4x^2 - 44x + 121 -9x +9`

    `0 = 4x^2 - 53x + 130`

    `4x^2 - 53x + 130 = 0`

    `x=(53\pmsqrt(53^2-4·4·130))/(2·4)`

    `x=(53\pmsqrt(729))/8`

    `x=(53\pm 27)/8`

    `x_1 =(53+27)/8 = 10`

    `x_2 =(53-27)/8 = 26/8 = 13/4`