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Summary

The use of prior information in the estimation of the heritability by parent-offspring regression
is discussed within a bayesian context. The a posteriori distribution is obtained by combining the
a priori distribution (uniform between 0 and 1), to that obtained from the data. Hence, a bayesian
estimator h*2 is proposed and its performance compared with those obtained by the least squares and
constrained maximum likelihood methods and also with two different bayesian estimators (Nicnnt et al.,
1979), using Monte Carlo simulation techniques. It is concluded that the estimate h*2 should be

preferred to the others, particularly for small sets of data.
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Résumé

Utilisation d’une information a priori lors de l’estimation de l’héritabilité
par la régression parent-descendant

L’utilisation d’une information a priori lors de l’estimation de l’héritabilité par la régression
parent-descendant est discutée dans le cadre bayésien. La distribution a posteriori résulte de la
combinaison de la distribution a priori uniforme sur (0, 1) et de celle déduite des données. L’estima-
teur bayésien correspondant h*2 est comparé à ceux des moindres carrés et du maximum de vraisem-
blance contraint ainsi qu’à deux estimateurs bayésiens proposés par NIGAM et al. (1979) en ayant
recours à des techniques de simulation. L’étude conclut à la préférence à donner à l’estimateur bayé-
sien h*2 notamment dans le cas de petits échantillons.

Mots-clés : héritabilité, estimateur bayésien.

1. Introduction

The heritability of a trait was defined by LUSH (1949) as the ratio of additive variance
to phenotypic variance, being the most important genetic parameter in the prediction of
selection response. Consequently, the problems involved in its estimation have received
considerable attention (HILL, 1974 ; BULMER, 1980 ; FALCONER, 1981).

By definition, the heritability value lies between 0 and 1. Nevertheless, values outside
this range can be found in practice and they are usually ascribed to sampling errors. In
such cases, the current procedure is to set these anomalous estimates to the nearest valid
bound, although the validity of this procedure in unclear (SALES & HILL, 1976 ; HAYES
& HILL, 1981).



Theoretically, several authors (THEIL & GOLDBERG, 1961 ; HOERL & KENNARD,
1970 ; IVIARCOUARDT & SNEE, 1975 ; TOUTENBURG & ROEDER, 1978) have considered
the problem of using prior information in the estimation of regression coefficients. NrGAtvt
et al. (1979) applied that theory to the estimation of heritability by regression analysis and
proposed two new estimators h2 and h2 which were considered to be superior to the tra-
ditional ones.

In this paper, a bayesian formulation of h2 and h2 will be given showing that they are
not logically sound. A new bayesian estimator h*2 is then proposed that seems superior
with regard to several statistical criteria.

II. Proposed improved estimators

Consider the linear regression of offspring (y) on single parent (x) expressed in devia-
tions from their means. The statistical model is

where j3 is the regression coefficient and E is the associated random error which is nor-

mally distributed with zero mean and finite variance (02).

The classical least squares estimator of j3 is

which is unbiased and has sampling variance

The heritability is estimated as h2 = 2!. When h2 does not lie between 0 and 1 the

usual practice is to consider the following estimator h2 :

It can be shown that this estimate is also the constrained maximum likelihood esti-

mate. The mean E (hl) and the variance V (h2) of the sampling distribution of h2 calcu-
lated from the properties of the truncated normal distribution (PEARSON, 1903 ;
COCHRAN, 1951 ) are

where x! and x, are the abscissae of the lower and the upper bounds in standard normal

units, respectively, zo and z, the corresponding ordinates on the standard normal curve
and po and p, the values of the standard normal distribution function for xo and x!.



The general methodology for obtaining bayesian estimators is to combine the prior
information and that available from the data in a new posterior distribution. The two esti-
mators (h[ and h!) proposed by NIGAM et al. (1979) can be formulated in a bayesian fra-
mework assuming and a priori distribution of the regression coefficient N ((3!, w2).

02
Because the regression coefficient obtained from the data is distributed N (fi, &mdash;-).

Zx,
the bayesian estimator will combine the two items of information weighted by the inverses
of their variances :

The variance and the bias of this estimator will be

The estimator h2 proposed by Nmnn-t et al. (1979) by imposing a linear stochastic
constraint on the regression equation can be shown to be equivalent to the bayesian esti-
mator for (30 = 1/4 and W2 = 1/64. On the other hand, the estimator h2 obtained from
converting the inequality constraints in the form of a concentration ellipsoid with mini-
mum volume, is equivalent to the bayesian estimator for (3! = 1/4 and W2 = 1/8. In prin-
ciple, h2 sould be preferred to h2 because of its lower mean square error.

The arbitrary nature of the h2 and h2 estimators now becomes apparent as there is no
empirical or logical reason to assume an a priori normal distribution of the regression
coefficient with mean 1/4.

As the only initial information available is that the regression coefficient is bounded,
it seems reasonable to assume an a priori uniform distribution between 0 and 1/2. This

type of distribution is justified by the lack of information about the true value of the para-
meter. The new bayesian estimator proposed here, h*2, is associated with an a posteriori
distribution which is a combination of the a priori distribution (uniform between
0 and 1/2) and that obtained from the data N ((3, 02/2:X?), as shown in figure 1. It appears
reasonable to choose the mean as measure of the central tendency, given the shape of the



posterior distribution. The use of the mode will result in h*2 = h2 and, on the other hand,
numerical analyses have shown that similar results are obtained by using either the mean
or the median. The h*2 heritability estimator is then given by the mean of the posterior
distribution.

Unfortunately, it is not obvious how to derive analytical formulae for the expected
value and the variance of the h*2 estimator. For this reason its performance will be
compared with alternative estimators by simulation methods.

It should be noted that the h*2 estimator may also have a non-bayesian and
straighforward interpretation. What is meant in essence is that the correct way of trunca-
ting the sample distribution of the regression coefficient is not to set the estimate to the
nearest valid bound but to reassign the distribution until the probability area between
0 and 1/2 is again unity.

Consider as an example the estimation of the heritability by daughter-dam regression
of the number of eggs laid by virgin females of Tri6olium castaneum scored from the 7th
to the llth day after the emergence of the adult. Data was available from 40 full-sib fami-
lies of size five. The results are summarized below :



The necessary quantities for the estimation of h2, h!, h[, h3 and h*2 are

and, from the standardized normal tables,

The heritability calculated by the least squares method is hz = - 0.10 ± 0.22. Follo-

wing the usual practice the estimate would be set to the nearest valid bound,

h2 = 0 ± 0.10 with a corrected standard error given by formula (2). Estimators h2 and hi
from (3) and (4) are h2 = 0.16 ± 0.16 and h2 = - 0.047 ± 0.21, respectively. Finally,
from (5), our estimator h*2 = 0.14.

III. Simulation results

Simulation has been carried out following the methods developed by RONNINGEN
(1974). It must be noted that these methods statistically simulate the genetic model, but
do not simulate mendelian sampling.

The study was carried out by generating 1 000 samples, each consisting of 20 half-sib
families of size five. The heritability was estimated by twice the parent-offspring regres-
sion coefficient using the following methods :

Table 1 shows the average values of these estimates over 1 000 runs together with the

corresponding empirical standard errors (SE). The true values of the heritability h2 used

to generate the data are also given. The least squares method is the only one resulting in
unbiased estimation for each value of the true heritability. The truncated estimator h2 is
only biased for extreme values of the true heritability (h2 % 0.20, h2 » 0.80) whilst h*2
and h2 are biased for almost all values of h2. The bias of the estimator h2 is very small.
It is also apparent that h)2 and h2 have standard errors which are considerable lower than
that of the least squares estimator. On the other hand SE (h!) is similar to SE (h2).
SE (h2) is appreciably smaller than SE (h2) for extreme values of heritability.

Two criteria have been used to compare the different estimators, the mean square
error (MSE) and the absolute value of the sum of the deviations from the true value
(SAD). Both criteria seem compatible with the practical use of the heritability coefficient
in the prediction of response to artificial selection. Traditionally, the bias has been given
a greater importance than the magnitude of the variance of the estimators but this pro-
cedure has been challenged (HOERL & KENNARD, 1970). For practical purposes, it

seems justifiable to prefer the estimator of heritability which is closer to the true value

irrespective of all other statistical considerations.





Both criteria lead to similar conclusions and therefore, only the MSE criterium will
be discussed in detail. The MSE values of the different heritability estimates are shown
in table 2. The two estimators h2 and h*2 are always better than fi2 for all values of the

true heritability. Preference should be given to h*2 over h2 because of the lower MSE

implied (almost half of that corresponding to the least squares estimate). The truncated
estimator h2 is accompained by a reduction in the MSE only for extreme values of the true
heritability. Although the use of the h! estimator leads to a considerable reduction of the
MSE there are several reasons for avoiding its use : (1) this estimator is not better than
that obtained by least squares for extreme heritability values ; (2) the assumption of an
a priori distribution N (1/4, 1/64) of the heritability is not logically or empirically sound ;
(3) h! is clearly worse than h*2 whatever criteria are applied.

Table 3 shows the MSE values for different number of families and family sizes. It

appears clear that the h*2 estimator is more efficient if the number of families and/or the

famility size is small (50 families of 10 half-sibs or less).



In some situations, prior information would allow to bound the true heritability value
to lie within narrower bounds.

In this case, the reduction in the. resulting MSE values arising is quite considerable.
It is not obvious how the estimators h2 and h2 can now be used and this therefore results
in further disadvantage.

It can thus be concluded that the new bayesian estimator proposed here h*2 is supe-
rior to the usual ones and must be preferred specially if the sample sizes are small. Fur-
thermore, the principles involved in its derivation can be generalized to more complex
situations and this work is now in progress.
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