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1 CHAPTER 1: Perspective on the Kähler Calcu-
lus for Experts on Clifford Analysis

1.1 Reconsidered Program of the Kähler part of
the summer school

This is the first of a few chapters that I plan to post in this web site
for potential participants in the Summer School, phases II and III. It
provides an illustration for (mainly) Clifford mathematicians who would
like to know what the Kähler calculus is about and what it offers. Start-
ing with the second chapter, these notes will be used at the school for
the actual teaching.

For the moment, the table of contents will not be removed, so that
the change will be easier to appreciate. I have come to the conclusion
that rather than teaching as much theory as needed for its multiple
applications, I shall present some materials and produce immediately
applications of it. Very occasionally I shall borrow a theorem (like a
uniqueness theorem) to be proved in a future chapter. The chapters
to be posted here will be only part of what will be lectured in Brasov,
just enough to provide the flavor of it. Those who are in a position
to understand these notes and plan to attend the conference might be
able to start reading the pertinent Kähler papers on their own and ask,
during the lectures, questions more profound that they might be asking
otherwise.

As an example, the second chapter will deal with Kähler algebra of
scalar-valued differential forms. It will be followed by a pair of applica-
tions: the theorem of residues and, unrelated to that, a new perspective

1



on the issue of superposition, a concept to be replaced with decompo-
sition, since it is through decomposition that the objects that one tries
to superimpose are actually generated. Let me be more explicit. If the
wave function is a member of the Kähler algebra, it can be written as
a sum of pieces that belong to the ideals and also are solutions, but
this is not sufficient to make them particle states. If you start with
particle states (even mixing particles with antiparticles both with both
options for handness) you do not get that intermediate state where you
decompose but do not quite get particles, as one still needs something
else for this. Of course, one can introduce concepts like matrix densities
or something of the sort to deal with issues of this kind. But this is
not as natural, or as rich or as reliable as starting with a solution of a
wave equation that you decompose to get spinors which are not yet wave
functions for leptons living in the same ideals.

The third chapter will deal with, among other topics, Kähler differen-
tiation of scalar-valued differential forms, strict harmonic and harmonic
differentials, Dirac type spinors (before we even consider a Dirac type
Kähler equation, since their form has to do with theory of solutions with
symmetry of exterior systems regardless of specifics), and so on. Appli-
cations: Real complex-like calculus in the plane, Helmholtz theorem for
differential 1−forms and 2−forms in 3-D Euclidean space, and a hint at
why there is room for theory on quantum collapse of the wave function
and quantum teleportation in this calculus. These issues are intimately
related to the issue of decomposition. One could say that these topics
are aspects of the same theory, which grows in sophistication as we keep
building more basic theory.

A fourth chapter will deal with the “Kähler-Dirac equation”, or sim-
ply Kähler equation. A variety of applications for relativistic quan-
tum mechanics follows: emergence of momentum operators, Pauli-Dirac
equation for particles and antiparticles, post Pauli-Dirac Hamiltonian
and an additional couple of topics.

At about this point, we shall have reached the third phase of the Sum-
mer School. It will deal with symmetry and conservation, a uniqueness
theorem for differential forms, integration at different levels of generality
for differentials whose exterior derivative and co-derivative are known,
Lie and Killing operators, unified spin and orbital angular momentum,
total argument momentum and its square, antiparticles, leptons and
quarks.

1.2 Introduction

The Kähler calculus is a calculus of tensor-valued differential forms. So,
we have a product of structures. The restriction of the Kähler calculus
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(KC) to scalar-valued differential forms is the generalization of the exte-
rior calculus that results from replacing the underlying exterior algebra
with Clifford algebra. Clifford analysts are used to the replacement of
exterior with Clifford. Then, what is special here?

In the KC, the interior derivative of a scalar-valued differential 1−form
is like the divergence, and the same derivative of a vector field is zero,
not the divergence, as we shall see. That is such an obvious difference
that one can understand it before learning the KC. This difference has
its origin in the fact that there is a greater variety of elements in the
full Kähler calculus than in other calculi. But the real important dif-
ferences consist in what the KC can do and the Dirac calculus cannot.
Of course, this chapter is an exception. It is meant to provide a per-
spective to those who can understand it. Everybody else should start
with the next chapter. So, if upon reading this chapter you start not to
understand, abandon it and go to the next one. Just before moving to
the next chapter, please read the last four sections of the present one. I
have given the exact places where the claims were proved by Kähler.

The files I may put in the web site of this summer school will be
referred as chapters because they will be so, up to minor modifications
in a book I am writing about what I shall call the Cartan-Kähler calculus.
It was announced in my previous book “Differential Forms for Physicists
and Mathematicians”. I know some readers are looking forward to read
it. There will be prior chapters on Clifford algebra and the exterior
calculus. But, for the purposes of the summer school, this will be chapter
one.

An outstanding feature of the KC is the ease with which one gets deep
into the world of quantum mechanics, immediately acquiring new vistas
since one enters if through a different door. So much so that we shall
speak of the quantum mechanics, ab initio relativistic, that emerges as a
virtual concomitant of the KC. At the end of this chapter, we shall briefly
illustrate some deep results for quantum mechanics that Dirac’s theory
does not match. For the moment let us just say that the wave function
in the “Kähler-Dirac” equation for scalar-valued differential forms is for
members of the algebra in general, not only specifically for spinors (i.e.
for members of ideals in this algebra).

Of course, there will be a lot of work to be done to revisit every piece
of physics from the new perspective. Better yet, just a little bit of Kähler
algebra will allow us, at the end of the next chapter, to start seeing how
old problems can be seen in a new light. For the moment, I shall deal
only with some computational issues to respond to the question, what
is new?
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1.3 Kähler and Cartan-Kähler calculi

As I mentioned in the second half of the biographical note of this web
site, the KC was formulated in three papers. The translation of the title
of the first of those papers is Interior and exterior differential calculus,
and the translation of the third is The interior calculus. The author is
dealing with the same calculus at the same level of generality. The only
main difference is that the last of these two is far more comprehensive
than the first one. So, it appears that he was not too sure at some time(s)
about what title he should have given to his calculus. The issue we have
with titles far transcends this one because of a far more important reason,
as we are about to explain.

We are fully interested in Kähler’s calculus for scalar-valued differen-
tial forms, not for tensor-valued differential forms, which we shall replace
with Clifford-valued ones. In the last two of these three cases, we are
dealing with tensors products of algebras. Then, sometimes, we shall
consider a restriction to “mirror elements” (concept not needed at this
point), which constitute a fourth structure. All four have to do with
Clifford structure but only one is a Clifford algebra. Hence, to minimize
clutter, I shall often use the term algebra not in the technical sense but
in the more general sense of the dictionary, namely as a mathemati-
cal system that uses symbols and specially letters to generalize certain
arithmetical operations and relationships. In this wide sense, all four of
those structures qualify as algebras.

Eventually, we shall use the terms Kähler’s algebra and KC to when
we deal only with scalar-valued differential forms. When dealing with
Clifford valuedness, we shall use the terms Cartan-Clifford algebra and
calculus. It is worth noticing that Cartan considered curvatures as bi-
vector valued differential 2-forms. We do not risk ignoring any applica-
tions with tensor-valued differential forms, since Kähler did not produce
any application for them.

1.4 Kähler’s differential forms

Kähler wrote his general differential forms as

u
k1...kµ
i1...iλ

=
1

p!
a
k1...kµ
i1...iλ l1...lp

dxl1 ∧ ... ∧ dxlp , (1)

where we are using Einstein’s convention of summation over repeated
indices. His excessive use of components is not a desirable feature for
a calculus, but has a very useful consequence. It shows explicitly that
we must consider two types of subscripts. They refer to two essentially
different concepts: scalar-valued differential r-forms (quantities with just
a l series of indices) and tensor-valued differential 0-forms or tensor fields

4



(quantities with only k and or i series of indices). Hence, his calculi are
ab initio different from all other known calculi that are based on Clifford
algebra. But Kähler did not exhibit the basis elements that pertain to
the i and k indices.

The affine curvature is a very well known example of the rare quan-
tities that have indices of all three types. Consider some vector-valued
differential 1-form. It need not be closed. For simplicity let us assume
that it were what Cartan and Kaehler would call the exterior derivative
of a vector field, though practitioners might refer to it with the name of
covariant derivative, name which is here reserved for a different purpose.
We have

dv = dviei + vkdek = (dvi + vkωi
k)ei. (2)

Differentiating next dv, we obtain a vector-valued differential 2−form,
ddv (which happens to be zero in Euclidean space), but we shall ig-
nore this (you may assume that the manifold is only approximately a
Euclidean space). The components of ddv are not what in the tensor
calculus one calls covariant derivatives. For that, we would have to dif-
ferentiate vj;kφ

kej, where (φi) is the basis of covariant vector fields dual

to the basis field (ej), i.e. φi x ek = δik. Let us not overlook that, in the
Kähler calculus, a differential 1−form is not a covariant vector (i.e. a
linear function of vectors) field, but a function of curves, evaluated by
integration on a given curve.

We get five terms for ddv, two from the differentiation of dviei, and
three more from the differentiation of vkωi

kei. The first term, ddvi is
obviously zero. The second and third terms cancel each other out. We
thus have

ddv = vkd(ωi
kei) = vk(dωi

k − ω
j
k ∧ ω

i
j)ei. (3)

Since dωk
i − ω

j
i ∧ ωk

j is a differential 2−form, it is of the form. Hence,

ddv = viRk
i l1l2

ωl1 ∧ ωl2ek. (4)

This says that the components of the vector-valued differential 2−form
ddv are viRk

i l1l2
. We then define curvatures f by

f ≡ Rk
i l1l2

ωl1 ∧ ωl2φiek, (5)

where all three types of indices are involved. Clearly ddv results from
evaluating f in v,

f x v =Rk
i l1l2

ωl1 ∧ ωl2φiek x vmem = vk(dωi
k − ω

j
k ∧ ω

i
j)ei = ddv. (6)

For more on this approach to affine curvature and the use of bases ω of
differential 1−forms (which are of the essence further below), check in
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your library my book “Differential geometry for physicists and mathe-
maticians”. I do not know of any other book which stays close to this
Cartanian way of doing modern differential geometry, or to the Kähler
calculus for that matter.

1.5 Kähler’s differentiation

In Kähler, all differentiations except Lie differentiation are based on his
concept of covariant differential. He gives it ab initio as

dha
k1...kµ
i1...iλ l1...lp

=
∂

∂xh
a
k1...kµ
i1...iλ l1...lp

+

+ Γk1
hra

r...kµ
i1...iλ l1...lp

+ ...+ Γ
kµ
hra

k1...r
i1...iλ l1...lp

− Γr
hi1
a
k1...kµ
r...iλ l1...lp

+ ...+ Γr
hira

k1...kµ
i1...r l1...lp

− Γr
hl1
a
k1...kµ
i1...iλ r...lp

+ ...+ Γr
hlra

k1...kµ
i1...iλ l1...rp

, (7)

where the gammas are the Christoffel symbols. Since this equation will
probably put many readers off, let me start by saying that the author of
these notes does not keep anything like this in his memory, nor does he
look for this formula when needed. There is a better way of doing his
differentiations. At this point, let me just make some helpful comments.

The differential of scalar-valued differential forms written in terms
of Cartesian coordinates requires only the first of those four lines. That
is good enough for many applications. If the differential form is scalar-
valued but the coordinates are not Cartesian, dh involves only the first
and fourth lines, regardless of whether the metric is the Euclidean met-
ric disguised by the use of an arbitrary coordinate system or whether it
is a proper post-Euclidean Riemannian metric. Lines two and three are
for the non-scalar valuedness but only when the affine connection is the
Levi-Civita (LC) connection. If the connection were another one, those
symbols would have to be replaced with the components of the given
(metric compatible) affine connection of the space. But the fourth line
would not change in this respect, as it does not depend on the connection
but only on the metric and its derivatives through the Christoffel sym-
bols. In addition to generalizing this formula for arbitrary connection,
one could also replace the tensor-valuedness with Clifford valuedness.
And let us not ignore either that vector-valuedness can take place in
exterior algebra, Clifford algebra and tensor algebra contexts. It does
not make a difference.

A more efficient, less cumbersome way to deal with “Kähler differen-
tiation” resorts to inferring the specific form of the covariant derivative
in each case from the equations of structure of the manifold. That is
what we are about to do.
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Let us give the basic ideas about Kähler differentiation, represented
by the symbol ∂. We seek to find an operator ∂ such that ∂ ∨ u (=
∂ ∧ u+ ∂ · u) will become

∂u = du+ δu, (8)

with ∂ ∧u = du, and such that δu will be intimately connected with the

divergence. In Cartesian coordinates, ∂ could be simply dxi
∂

∂xi
. But this

is not good enough for general coordinates, as the form of the divergence
in curvilinear coordinate attests to. For this reason, we shall rather seek
∂u in the form

∂u = dxi ∨ diu. (9)

for some covariant derivatives diu canonically determined by the struc-
ture of the manifold and such that dxi ∧ diu = du. The notation

∂u = ∂ ∨ u = ∂ ∧ u+ ∂ · u

still is justified if we understand it to mean

∂ ∧ u = dxi ∧ diu = du, ∂ · u = dxi · diu = δu.

We have just connected with the exterior calculus, which we are extend-
ing with this δu, once we define diu. This will be much richer than
Ricci, or de Rham or Dirac theory since the context is much larger than
in those theories. The proof will be in the pudding. We shall thus refer
to δu as the interior derivative since it is a concept more comprehensive
than divergence depending on what objects u the operator δ is applied
to.

1.6 Kähler’s differentiation through geometric struc-
ture

Assuming we had already computed du by the standard formula in the
exterior calculus, we might try to infer diu from du = dxi ∧ diu. But
du does not determine di or ∂, which is the reason why we have not
displayed dxi∂/∂i . It would work for the exterior derivative. but it
would not yield the right divergence. But there is one such solution
that is canonically determined by the equations of the structure of the
manifold endowed with a metric, regardless of whether the manifold has
an affine structure or not.

Define a set of n differential forms ωi’s such that

ds2 =
n∑

i=1

(ωi)2, (10)
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for any specifically given quadratic symmetric differential form ds2 =
gijdx

idxj (i = i, ..., n). These ωi are defined up to the most general
rotations in dimension n.

As any good book on differential geometry shows, the system of
equations

dωi = ωj ∧ ωi
j, ωij + ωji = 0 (11)

defines a set of ωi
j’s. For the same metric, we may consider the system

0 = d(dxi) = ωj ∧ αi
j, dhgkl = 0,

the second of these equations being known as the statement that the
covariant derivatives the metric is zero. The Christoffel symbols are
defined by αi

j = Γi
jldx

l.
The last two systems define the same mathematical object. This

does not mean that the αi
j and the ωi

j are equal, or even the components
of some object of grade two. The Γi

jl and the Γ′ijl defined by ωi
j = Γi

jlω
l

are related by non-tensorial equations known as the transformations of
connections. The mathematical object of which the αi

j’s and the ωi
j’s

are components is a differential form valued in the Lie algebra of the
Euclidean group (actually of the affine extension of the Lie algebra of
the Euclidean group; do not bother about these details) of dimension n.
All those other differential forms are components. It is legal tender nev-
ertheless to call them differential forms by making them so as a matter
of definition. I shall try to explain this with what should amount to a
simpler example.

The first element of orthonormal vector bases at some point of Eu-
clidean space is not a vector, but a set of them: cosφ i − sinφ j. It is
basis dependent. Once a basis has been chosen, say for φ = π/4, we
have a vector (2)−1/2 i −(2)−1/2 j. We can now take this vector and ex-
press it in terms of any other basis (in particular for φ = π/3), where
it is not its first element. This type of idea is involved at a far more
sophisticated level in the difference between αi

j and the ωi
j. For a deep

understanding of this, see my book “Differential geometry for physicists
and mathematicians” if you do not know of any other book dealing with
this subject (I do not any, except for information scattered over a vari-
ety of E. Cartan’s papers). The book is now in 500 libraries, hopefully
enough of them to have one in a library of your country, where institution
could get it for you if it does not have it.

In order to do differentiation in terms of bases that are not coordinate
bases, we first define f/k as given by df = f/kdx

k. We then have

dv = ai/jω
j ∧ ωi + al ∧ dωl = ωj ∧ ai/jωi + alω

i ∧ ω l
i =

= ωj ∧ ai/jωi − alΓ l
i jω

j ∧ ωi = ωj ∧ (ai/jω
i − alΓ l

i jω
i). (12)
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By virtue of the relation of this formula to the structure of a manifold,
it pertains to define Kähler’s covariant derivative djv of a differential
1−form v = aiω

i as
djv = ai/jω

i − alΓ l
i jω

i (13)

If ωi is dxi, the covariant derivative djv becomes

djv = ai,j dx
i − alΓl

ijdx
i. (14)

For rectilinear coordinates, thus Cartesian in particular, dj reduces to
the partial derivative with respect to xj since the Christoffel symbols
then become zero. For the interior derivative, we then have

δv = dxj · djv = dxj · dxi(ai,j −alΓl
ij) = gij(ai,j −alΓl

ij) = aj,j −alΓjl
j.

(15)
We have not written δv as ∂ · v since dj now is ∂j − lΓ

jl
j . We use the

underbar because a has different subscripts on the two terms of djv.
Let us return to dωi = ωj ∧ αi

j. For differential 1−forms dxj, the
exterior derivative, d(dxi), is zero, and so is dxj∧αi

j. On the other hand,
the connection equations are

dei = −ωi
je

j, (16)

from which we would infer dhe
i, and similarly for dhei. The comput-

ing of interior and Kähler derivatives will be easily achieved from these
equations. It is really simple.

1.7 Perspective on two physical applications devel-
oped by Kähler himself

This preview for Clifford analyst would be only one half of an important
picture without mentioning a couple of very important physical implica-
tions of the quantum mechanics that appears to spring out of it, without
obvious alternative. Both of them are related to the fact that, unlike
Dirac’s theory, Kähler’s quantum mechanics is not about spinors but
about differential forms. Spinors, in the form of members of ideals of
the Kähler algebra, are a concomitant of the treatment of solutions with
symmetry of exterior systems, as any system of differential equations
can be shown to be.

In his 1960 paper, Kähler starts with a profound treatment of partial
differentiation of differential forms with respect to the angular coordinate
associated with rotational symmetry. Eventually, both spin and angular
momentum emerge from it, at par. Tracing spin from the end of Kähler’s
derivation to the beginning of his argument, we realize that spin starts
its life in Kähler ’s theory inside a partial derivative of a field conceived
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not as a probability amplitude, but as a more conventional type of field;
not as a spinor or member of an ideal in the algebra, but as a member
of the algebra itself independently of any ideals.

In addition to the elegance and reliability of Kähler’s argument, this
reading in reverse shows that a particle is “some special part of the field”,
not just something that mediates among the particles, since these are
simply special configurations of it. This is consistent with Einstein’s
view, though not exactly, as expressed by his words in correspondence
with Einstein: “To realize the essential point of atomistic theory, it is
sufficient to have a field of high intensity in a spatially small region ...”.
This idea of Einsteinean pedigree finds natural implementation in the
Kähler calculus.

As profound as this result is in connection with spin, there is another
one as profound, namely the treatment of not charge, not antiparticles,
not energy, but all three at the same time. Let me give an inkling of
why this is so. A solution with time translation symmetry of a quantum
equation is known to require a phase factor with time and energy in
the exponent. But, if the equation is written as an exterior system (as
in the Cartan-Kähler theory of systems of differential equations), one
also needs as factors two idempotents that define complementary ideals.
Each of these belong to the signs of charge for each value of the energy
in the phase factor.

Why may we make such a statement about charge? Kähler already
explained why. It is a consequence of the decomposition into two terms
of the wave function of a Kähler-Dirac equation under time translation
symmetry, one from each of two complementary ideals. The correspond-
ing conservation law for the wave function is then composed of two parts,
one for each of those two terms. The left hand side of this law becomes
the sum of the left hand sides of two conservation laws, not the sum of
two conservation laws. The small difference between the two pairs of
similar terms emerging in the process led Kähler to identify a physical
magnitude, the electromagnetic charge, which may have two signs. The
same energy but two signs of something when the coupling is electromag-
netic coupling led him to view the two terms as representing particle and
antiparticle. There is no need for an infinite sea of negative energy solu-
tions, the weirdness of this concept being kept virtually silent in modern
quantum physics. If Kähler had done his work in the late 1920’s, we
would be asking in 2016: ”Dirac who?” Of course, Dirac was a genius
since he provided a solution, though imperfect, to a problem for which
the mathematics was not yet ripe.
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