
CHAPTER 2: Kähler Algebra

Jose G. Vargas

Participants in this summer school will at this point know enough
Clifford algebra not to be confused if we sometimes represent Clifford
products with the inverted wedge product sign and at other times by
juxtaposition.

The Kähler calculus is a little bit strange. This may be because
it is an approximation to something much deeper and to which I shall
refer as the Cartan-Kähler calculus and which reconciles the ways of
Cartan in differential geometry with the ways of Kähler on matters of
calculus. One gets the impression that Kähler did not totally absorb
Cartan’s teachings in differential geometry. For this reason we shall use
the term Kähler geometry and calculus when dealing only with scalar-
valued differential forms. This less comprehensive version is enough to
produce a great simplification of proofs and mathematical arguments
when compare with the same issues in the standard mathematical and
physical paradigms.

1 A practical approach to Kähler algebra

Hervibores in the African savanna are born knowing how to walk and
soon learn how to run. They must have acquired some concept of running
by the time one of them spots a lion and sends a signal to the herd and
everybody starts to run. Of course, they do not know the anatomy and
physiology involved in running but they surely know how to run. I do
not need to explain how this example applies to this section. Thus,
after reading section 1, one can jump to section 3 of this chapter and
proceed with the integrations that are usual in an undergraduate course
in complex variable. But, for the developments in the next chapters,
one will have to read sections 1, 2 and 4. Readers who may not like the
Kähler calculus are invited to develop alternatives that will efficiently
match Kähler’s results.
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1.1 Definition of basic products

Kähler algebra (of scalar-valued differential forms) on a differentiable
manifold (not on a tangent space or cotangent space!!!) endowed with a
metric is the Clifford algebra defined by the relation

dxidxj + dxjdxi = 2gij. (1)

Hence

dxi∧dxj+dxj∧dxi = 0, dxi ·dxj = gij =
1

2
(dxidxj+dxjdxi), (2)

which come together as

dxidxj = dxi ∧ dxj + dxi · dxj. (3)

If the differentiable manifold is a Euclidean vector space and the coordi-
nates are Cartesian, we simply replace gij with δij. All this can be said
in a very elegant manner without using bases, but the definition would
be very abstract. We have said emphasized the “of scalar-valued differ-
ential forms” to make sure we avoid confusions. Kähler also considered
a more general structure consisting of tensor-valued differential forms.
These do not constitute a Clifford algebra but the tensor product of a
tensor algebra by the Kähler algebra just defined.

Let (A,B) be an ordered pair of two points in a differentiable mani-
fold. Let γ be any curve with ends at those points. By definition dxi is
the function of curves such that∫

γ

dxi = xiB − xiA. (4)

Notice that we have not invoked either linear functions (i.e. covariant
vectors) or covariant vector fields.

Consider next the differential form 3dx+xdy on curves between those
same points. The integration depends on curves since this differential
form does not have a potential function. Finally compute (To avoid
confusion, I did not say evaluate) 3dx+xdy at any point with coordinate
x equal to 2. We obtain 3dx + 2dy. This is not something that we can
evaluate on γ because it is not legal to first compute it at a point and
then evaluate it on a curve, unless the differential form to be evaluated
had been defined as 3dx+ 2dy in the first place. The most we can do in
this respect is to associate with 3dx + xdy equal to 2 points the linear
function of tangent vectors 3φ1 + 2φ2 where φi x ai = 1, φi x aj = 0 for
i 6= j.
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The pair (A,B) is the boundary of the manifold γ. So, Eq. (4)
is a particular case of Stokes generalized theorem, which is here used
as a definition, the reversion of roles of theorems and definitions being
permissible. The formula for the exterior derivative would be a theorem
rather than a definition. This may not be the most expedient course of
action for the development of a calculus, but it is the most fundamental
since integration requires less restrictive conditions than differentiation.
Notice that we have not given any rule about differentiation yet, since
none was needed.

One would proceed in similar manner for differential r−forms, i.e.
as functions of r−surfaces. The use of Stokes theorem as a definition
is nothing new. Elie Cartan already used it almost a century ago for
defining the exterior derivative of a differential form whose coefficients
are not differentiable functions.

Although we should not care too much at this point about the sig-
nificance of the dot product of two differential 1−forms, let us make a
few remarks that may be helpful and a preview of arguments to come.
In Cartesian coordinates, products dxi · dxj are zero unless i = j. But
dxi · dxi does not have an invariant meaning;

∑n
1 dx

i · dxi does. One
would then have to see these products in context.

∑n
1 dx

i · dxi. This
expression is related to some beautiful canonical Kaluza-Klein geometry
which supersedes standard differential geometry. Again, we shall have to
wait for Cartan-Kähler calculus in order to go deeper into it in a future
chapter. Without going into any of that and not even raising the issue,
Kähler obtained great results with the structure just mentioned. They
eliminate significant problems of standard quantum mechanics.

Kähler used bases of differentials of arbitrary systems of coordinates,
Cartesian coordinates not existing in non-Euclidean or non-pseudo-Euclidean
spaces. Hence, we would have

dxidxj + dxjdxi = 2δij. (5)

in the Cartesian case. We would have to also replace gij with δij in (2).
We prefer to use bases (ωl) constituted by linear combinations of the

differentials of the coordinates, whether these are Cartesian or not. We
shall again have

ωiωj + ωjωi = 2gij (6)

But we can always orthonormalize the metric so that we get

ωiωj + ωjωi = 2δij, (7)

regardless of whether the manifold is a Euclidean space or not.

13



The ωi notation is common in differential geometry developed with
differential forms, usually in context of theory of connections. But this
notation has nothing to do with connections, just with the metric. Of
course, one can get Christoffel symbols and the Levi-Civita connection
from the metric and its derivatives, but they are not needed at all for
present purposes.

Let ωi be defined by ωj · ωi = δji for all pairs of indices. The ωi’s
are not meant to be linear functions on the module spanned by the basis
(ωj) (The concept of module is more general than that of vector space,
but you will not have problems here if you think of a module as if it were
a vector space). Nothing could be more misleading than to think of the
ωi’s as linear functions of anything. They are specific cases of functions
of curves, just as legitimate as the ωi’s. They constitute just alternative
bases in the module of differential forms.

Kähler likes to define the symbol ei where we use the left dot multi-
plication “ωi·”. The action of ei has the distributive property since, as
we know,

ωi·(ωj∧ωl∧ωk) = (ωi·ωj)(ωl∧ωk)−(ωi·ωl)(ωj∧ωk)+(ωi·ωk)(ωi∧ωj. (8)

And similarly for “ωi·(ωj∧ωl∧ωk)”, since ωi is as legitimate a differential
1−form as ωi. We thus have

ωi·(ωj∧ωl∧ωk) = (ωi·ωj)(ωl∧ωk)−(ωi·ωl)(ωj∧ωk)+(ωi·ωk)(ωi∧ωj (9)

or, equivalently,

ei(ω
j∧ωl∧ωk) = (eiω

j)(ωl∧ωk)−(eiω
l)(ωj∧ωk)+(eiω

k)(ωi∧ωj. (10)

Some learned readers would prefer to base the calculus and even
differential geometry on vector field equations that largely parallel those
we have given. A participant in this summer school already did so. The
advantage of the Kähler way is that he deserves vector fields for other
purposes. The parallelism ceases as soon as we consider differentiation.
In any case and for the moment, I am reproducing what Kähler did
and shall later show my view of where one should go, guided by the
applications that ensue from the course of action to be followed. At this
point I advocate the Kähler course of action because of the results he
obtained and which nobody else appears to have even matched.

1.2 Using D=2 to get used to Kähler algebra

In terms of polar coordinates in 2-D Euclidean space E2, we have

((dρ)2 = 1, (dφ)2 = dφ · dφ =
1

ρ2
, dρ · dφ = 0. (11)
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dxdy = −dydx, (dxdy)2 = −1. (12)

We use the abbreviation i for dxdy. The complex-like inhomogeneous
differential form z,

z
.
= x+ ydxdy

.
= x+ yi, (13)

emerges from the relation between (dρ, dφ) and (dx, dy):

dφ =
xdy − ydx
x2 + y2

=
x− ydxdy
x2 + y2

dy =
1

x+ ydxdy
dy = z−1dy, (14)

dρ =
xdx+ ydy

(x2 + y2)1/2
= ρ

x− ydxdy
x2 + y2

dx =
ρ

x+ ydxdy
dx = ρz−1dx. (15)

By virtue of (13), it is clear that

z±m = (x+ yi)±m = ρ±memφi = ρ±m(cosmφ± i sinmφ), (16)

for integer m.
There is a laudable effort on the part of Clifford mathematicians to

replace the imaginary unit with elements of real Clifford algebra, an
effort with which this author wholly agrees. But I see that there has
been an abuse of the replacement of the imaginary unit with the unit
pseudo scalar of the algebra when some other element in the algebra of
square minus one is a more natural choice. So, rather than replace, it
is a better process to let the right element emerge without resort to a
replacement, which is what we have done in this case and shall be doing
time and time again. And nothing impedes to proceed in reverse, and
abbreviate (once found) dxdy as i, and write cosmφ ± dxdy sinmφ as
eimφ. e shall sometimes use dxdy and i simultaneously, choosing one or
the other in each specific case depending on what we wish to emphasize
Finally, here is a remark for those without much Clifford experience who
may have read this paragraph. The square of the unit pseudo-scalar may
be plus or minus one. It depends on dimension and signature.

Let α be a differential 1−form and let u and v be scalar functions.
We have

(u+ vi)α = α(u+ vi)∗, (17)

where
(u+ vi)∗ ≡ u− vi, (18)

and, in particular,

z∗ = x− yi, z∗ = ρ2z−1 (z∗)−1 = ρ−2z, (19)

with i = dxdy. Clearly

u =
(u+ vi) + (u+ vi)∗

2
, v =

(u+ vi)− (u+ vi)∗

2i
, (20)

as in the calculus of complex variable but again with i = dxdy.
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1.3 The angular integrand

For the purpose of certain integrations,we wish to have the angular inte-
grand part j(ρ, φ)dφ of a differential 1−form α = h(ρ, φ)dρ+ j(ρ, φ)dφ,
when it is given in terms of Cartesian coordinates

α = k(x, y)dx+ g(x, y)dy. (21)

We clearly have
j = ρ2 α · dφ (22)

and, therefore,

α = wdx, w ≡ k − gdxdy = k − gidy. (23)

We proceed to compute j. For that purpose, we express the dot prod-
uct in terms of Clifford products:

j = ρ2(wdx) · (z−1dy) =
ρ2

2

[
wdxz−1dy + z−1dywdx

]
=

=
ρ2

2

[
w(z∗)−1i− z−1w∗i

]
=

1

2
[wz − w∗z∗] i = −(wz)(2), (24)

where the superscript refers to the coefficient of the differential 2−form
part (of wz in this case). For the last step, we have used the last of (19).

2 Algebraic background for (algebraic) neophytes

A legitimate question is. Since Kähler algebra is just one more Clifford
algebra, why should one give a name to it? One does not give a name
to every possible Clifford algebra. The point is that the concept of
differential form in 99% of the literature (though not in Rudin’s classic
book “Principles of Mathematical Analysis”) is not as an integrand but
as antisymmetric multilinear functions of vector fields. The appellative
Kähler algebra is meant to remind us of this feature, of the need to
remember that these are r−integrands, i.e. functions of r−surfaces.

2.1 Splits and pseudo-splits of a Clifford algebra

As you already know, the elements of even grade of a Clifford algebra
constitute an algebra by themselves, called the even subalgebra. The set
of the odd elements is not an algebra, since it is not closed (The product
of two odd element is even). But there are other subalgebras of the
same dimension, 2n−1. Choose just an element of a basis of differential
1−forms. Call it dxi for any given i. Any differential form u in the
Kähler algebra can be written as

u = u′ + dxi ∧ u′′, (25)
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where both u′ and u′′ are both uniquely defined if we demand that none
of them contains dxi as a factor. It is easy to prove that this decom-
position splits the algebra into a subalgebra of dxi’s and the set of all
the other elements in the algebra. If the signature of the algebra is
definite, the signature of the subalgebra does not depend on which dxi

we choose. All of them are isomorphic. But, if it is not definite, we
get different subalgebras depending on whether (dxi)2 is 1 or −1. For
simplicity, we took a member dxi of a basis of differential 1-forms. But
any differential 1−form can be chosen as a member of any such basis.
Vice versa, we could always express the dxi in the displayed formula as
a linear combination of the differential of some other coordinate system.

In the following, we proceed very slowly, since we are in a hurry.
Consider the “identity”

1 =
1

2
(1 + a) +

1

2
(1− a), (26)

where a is a member other than a scalar of Kähler algebra. Premulti-
plying by arbitrary elements u of the algebra, we get

u = u
1

2
(1 + a) + u

1

2
(1− a) (27)

This looks like a decomposition. Call it that if you wish, but let us play
with it in order to distinguish between two situations.

Assume we had a two dimensional space with signature (1,1). To be
specific, (dx)2 = 1 and (dt)2 = −1. In connection with the decomposition

1 =
1

2
(1 + dx) +

1

2
(1− dx), (28)

let us premultiply 1
2
(1± dx) by dx. We obtain

dx
1

2
(1± dx) = ±1

2
(1± dx). (29)

The right and left of this equation are of the same type in the sense that
they both have the factor (1 + dx) on the right. We shall later see that
they cannot be written with the factor (1 − dx) as last factor on the
right.

Consider on the other hand

1 =
1

2
(1 + dt) +

1

2
(1− dt), (30)

and premultiply 1
2
(1 + dt) by dt. We obtain

dt
1

2
(1 + dt) = −1

2
(1− dt). (31)
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This element can be written in both ways, meaning that in one case the
last factor on the left is of the type (1 + a) and the last factor on the
right is of the type (1− a) for the same a.

Let us see another example. Simple operations show that whereas

1

2
(1 + dxi)

1

2
(1 + dxi) =

1

2
(1 + dxi), (32)

we, on the other hand, have

1

2
(1 + dt)

1

2
(1 + dt) =

1

4
(1 + dt)− 1

4
(1− dt). (33)

Whereas on the right hand side of (32) the factor (1 + dxi) remains,
we have both (1 + dt) and −1

4
(1 − dt) in the second. It makes a great

difference whether a2 equals 1 or −1. The cases a2 = +1 has advantages
that no alternatives have.

We shall refer to the equation

u = u
1

2
(1 + dxi) + u

1

2
(1− dxi), (34)

as a split of u, and, since u is arbitrary, it splits the algebra into two
subalgebras without unit. On the other hand, the equation

u = u
1

2
(1 + dt) + u

1

2
(1− dt) (35)

does not represent a split since one can write any member of the algebra
with both (1+dt) and (1−dt) as last factor. All this will become increas-
ingly obvious as we familiarize ourselves with this type of computation
in the next subsection.

Assume now that 1
2
(1 ± dxi) were associated with space translation

symmetry in the xi direction. We would then expect that 1
2
(1 ± dt)

would be associated with time translation symmetry. The sign of the
square will make great difference vis a vis the decompositions that we
are about to consider. Since one needs square +1 for interesting and
fruitful results, Kähler used the decomposition

u = u
1

2
(1 + idt) + u

1

2
(1− idt) (36)

to treat time translation symmetry, with i as the usual imaginary unit
of the calculus of complex variable. Notice that, since (idt)2 equals +1,
the last equation represents a split into two subalgebras. In order to
achieve this behavior (which is desired because of what we shall see in
the next section), Kähler resorted to the field of the complex numbers,
if we were in the field of the reals in the first place. We shall see in a
future chapter that the usual i can and should be represented by real
elements of some structure. These elements will emerge spontaneously
rather than be introduced ad hoc.
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2.2 Idempotents and ideals

A subset A of some Clifford algebra Cl is said to be a left ideal if and
only if

Cl A = A. (37)

In words, A is a subset of Cl such that multiplying it on the left by any
element of Cl returns an element of A. We are thus saying that A is
closed under multiplication by Cl on the left.

An idempotent is defined as an element of Cl whose square is equal
to itself. By trivial recursion, one sees that any integer power of an
idempotent returns it. Some examples of idempotents are 1

2
(1 ± dxi),

1
2
(1 ± idt) and 1

2
(1 ± idxdy). The two idempotents in each pair annul

each other, i.e.

1

2
(1 + a)

1

2
(1− a) =

1

2
(1− a)

1

2
(1 + a) = 0. (38)

Any such pair naturally defines a complementary pair of left ideals

Cl = Cl
1

2
(1 + a) + Cl

1

2
(1− a) (39)

These ideals are subalgebras, but without a unit. let us start by showing
that no element of the algebra except zero can be in both ideals at the
same time. Indeed imagine you had

u
1

2
(1 + a) = v

1

2
(1− a). (40)

If we right multiply by 1− a, we find that v is zero; and, if by 1 + a, we
find that u is zero. The unit is a linear combination of (1 + a) from one
ideal and (1− a) from the other.

We now get some important practice with idempotents. Because of
our future use of them, we shall adopt the same terminology as Kähler.
Define idempotents

ε± ≡ 1

2
(1∓ idt), τ± ≡ 1

2
(1± idxdy). (41)

Notice, but do not worry, about the inversion of sign between the left
and right hand sides of the definition of the ε±. We have

ε+ε− = ε−ε+ = 0, τ+τ− = τ−τ+ = 0 (42)

and
ε+ + ε− = 1, τ+ + τ− = 1. (43)
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We shall refer with the term of complementary idempotents to any pair
of them that add up to one and mutually annul. Notice also the most
important feature that the ε’s commute with the τ ’s.

A remark about notation. Whereas ε±τ± means the two options ε+τ+

and ε−τ−, we shall use the asterisk, as in ε±τ ∗, to mean the four options
ε±τ± and ε±τ∓. The four ε±τ ∗ mutually annul. This is to be compared
with the idempotents jointly generated by the non commuting elements
idt and dxl for given l. The four idempotents ε± 1

2
(1∗dxi) do not mutually

annul. For example, we have ,[
1

2
(1 + idt)

1

2
(1 + dxi)

] [
1

2
(1 + idt)

1

2
(1− dxi)

]
=

1

8
(1 + idt)(1− dx.i).

(44)
The right hand side of

1 = ε+τ+ + ε+τ− + ε−τ+ + ε−τ− (45)

is a sum of mutually annulling idempotents, but the right hand side of

1 = ε+
1

2
(1 + dxi) + ε+

1

2
(1− dxi) + ε−

1

2
(1 + dxi) + ε−

1

2
(1− dxi) (46)

is not.
We have extended the splits

Cl = Cl ε+ + Cl ε−, Cl = Cl τ+ + Cl τ− (47)

into the more comprehensive split

Cl = Cl ε+τ+ + Cl ε+τ− + Cl ε−τ+ + Cl ε−τ−. (48)

It is legitimate to ask whether we can continue this extension. For that,
we cannot count on 1

2
(1± dxi) because of what we said above. We may

wonder, however, whether we could find some idempotents other than
the 1

2
(1± dxi) in order to make the split even more comprehensive. For

instance, dtdxdy is of square +1. But we then have, for example,

ε−τ+
1

2
(1 + dtdxdy) = 0, ε−τ+

1

2
(1− dtdxdy) = ε−τ+, (49)

so that we do not get new idempotents and thus not an extended split.
We could keep trying to find some other (pair of) idempotent(s) to

multiply ε±τ ∗ and which would commute with them. None exists. We
then say that the ε±τ ∗ are primitive as they do not comply with the
following definition. An idempotent is said to be primitive if it cannot
be decomposed into a sum A+B of two commuting, mutually annulling
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idempotents, i.e. such that AB = BA = 0. Since the dimension, 4,
of spacetime is rather low for present purposes, one can readily find
by trial and error that the ε±τ ∗ are primitive. For higher dimension
one resorts to a so called Radon-Hurwitz theorem to find the number
of such idempotents as a function of dimension and signature of the
metric. A detailed exposition of this subject does not pertain here and
would also take too much room. We refer interested readers to the book
“Clifford Algebras and Spinors” by Pertti Lounesto. For the case in
point, application of the theorem confirms that the ε±τ ∗ are primitive.
To be clear as to the meaning of the theorem, let us say that there are
more primitive idempotents in 3-D Euclidean space and in spacetime,
like the 1

2
(1+dx)1

2
(1∗ idydz), but this is not a split that extends the one

by ε±τ ∗. For our purposes, the Radon-Hurwitz theorem has to do with
the process of continuing to split idempotents.

3 Application 1: Theorems of residues and Cauchy’s

This section is a typical one on applications, i.e. one where the applica-
tion is completed. In the KC , we distinguish two parts in what goes by
the name of calculus of complex variables as taught in an undergraduate
course in the subject. There is a major difference between the two. It
is for this reason that we treat the subject in two different chapters, the
two treatments in the sense that one does not require the other. They
are two different topics. In this application, we do not need a concept of
differentiation additional to the one in any course on the real calculus of
several variables. Algebra suffices, namely the algebra that we have just
seen in section 1. We shall perform certain real integrals for which the
standard calculus of complex variable is typically used. Instead of the
complex plan, we shall have a Clifford algebra Cl(0,1) of differential forms
viewed as even subalgebra of Cl(2,0). We intend to present her a polished
and more comprehensive version of the presentation of the theorems of
residues and of Cauchy presented in a paper in arXiv. Just type Jose G
Vargas on the top right hand corner and scroll a little bit down to find
the pdf file of the paper “Real Calculus of Complex Variable: Weier-
strass Point of View”. Since readers already have this available to them,
we temporarily skip the writing of this section. We shall thus use our
time to get to the core of the Kähler calculus as fast as possible.

In an application in the next chapter, on the other hand, we begin
the representation of the theory of complex variable without complex
variable. It can deal in principle with any problem which does not even
exist in standard real analysis, although it will be focussed on integrals
because of the interest of the targeted audience. We shall thus define
integrations which, in terms of differential forms, would put a differential
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2−form as integrand of a line integral. Of course, this is a totally new
game. What will correspond to an integral with complex integrand will
require some new concepts in calculus with real differential forms.

4 Application 2: Algebraic template for concepts
like collapse, entanglement, confinement and tele-
portation

All the physical applications of the KC revolve around the split

1 = ε+τ+ + ε+τ− + ε−τ+ + ε−τ−, (50)

or the still simpler splits considered below. This particular one is related
to the pair spin and rest mass, as we shall learn in the electromagnetic
environment. Neither the electromagnetic differential 2−form nor the
electromagnetic potential are members of any of the four ideals defined
by the four idempotents ε±τ ∗, but certainly can be decomposed into
members of them. Kähler showed in an argument in his 1961 paper
—complemented with work in 1962 on charge and antiparticles— that
electrons and positrons of both chiralities relate to those idempotents in
a one to one correspondence. These play an even larger role than the
phase factors —which also are essential— in determining the treatment
of solutions of quantum mechanical equations involving particles.

In the Dirac theory, idempotents do not play the core role that they
play in the Kähler calculus for decomposing wave functions that do not
belong to an ideal. The reason is that the Dirac equation is ab initio
about elements of ideals, and the Kähler equation is about members of
the whole algebra; the members of the ideals are but a very important
development. This is just but one of the reasons why Kähler’s quantum
mechanics supersedes Dirac’s.

The split (50) will later be extended to more comprehensive splits,
which he did not pursue. For that, he first should have geometrized
the imaginary unit, its role then being played not only by dxdy, but
also by dydz and dzdx, all three simultaneously. But, at this point, we
would already be outside the realm of algebra and calculus with scalar-
valued differential forms. The extension of (50) would take place through
primitive idempotents consisting of three factors, which include one each
of the pairs ε± and τ±. We shall later explain how this is possible.

For the moment, let us go into what (50) has to offer. This split
implies that any element of the algebra can be written as a sum

u = +u+ ε+τ+ + +u− ε+τ− + −u+ ε−τ+ + −u+ ε−τ−. (51)

This decomposition is unique if we demand that the coefficients ±u∗ are
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elements of the Kähler algebra that depend on dρ and dz but not on dφ
and dt. This demand does not entail lack of generality.

Since the four idempotents ε±τ ∗ are mutually annulling, we multiply
this equation by ε+τ+ on the right and obtain

uε+τ+ = +u+ ε+τ+, (52)

and similarly for products of (51) on the right with the other three idem-
potents. We find the +u+ by performing operations in (52) that move
the factors dt and dφ in u to the right to be absorbed by the idempo-
tents. In computations of later chapters, we shall encounter examples of
these absorptions. But how can these ideals represent leptons?

The ideals represented in (51) through an arbitrary element of the
algebra are intimately connected with the form that solutions with time
translation and rotational symmetry take. The association of ε±τ ∗ with
electrons and positrons is but a first step in the association of ideals
with particles, including muons, taus and quarks. We also need a corre-
sponding phase factor. The ε± idempotents take care of the dependence
on dt and the corresponding phase factor then takes care of the depen-
dence on t, which has to do with differentiation, not with algebra. We
then need the concept of constant differentials (chapter 3). The ε±τ ∗’s
are constant differentials. This has the implication that differentiation
of a member of any of those ideals remains in the ideal. This propa-
gates to the Kähler equation (chapter 4), which may then be viewed as
an entanglement of four equations. Solutions will correspond to actual
leptons when some external factor like an electric field or a measuring
instrument produces the collapse of that entangled system. Until that
happens, the spinors are not necessarily particles. Notice the expanded
meaning that collapse has here. What is additional in Kähler’s rela-
tive to Dirac’s quantum mechanics is that we have a richer variety of
superpositions because the superimposed elements are entangled. Tele-
portation phenomena are a case of collapse in this extended sense. The
Cartan-Kähler extension of Kähler theory will provide us with a better
tool kit to interpret what is it that travels in opposite directions and
that ends in a correlated collapsed that apparently violates causality. A
violation does not actually occur, as we shall explain further below.

The simpler split
u = +u ε+ + −u ε−. (53)

already has the major implication of yielding a concept of charge which
comes in types positive and negative, but both for the same sign of
the energy. This result will apply in particular to the ideals generated
by ε±τ ∗ and, more particularly, to pair creation and annihilation. The
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emergence of negative energy solutions in Dirac’s theory is an spurious
effect. Both particles and antiparticles are in the same footing.

The split
u = u+ τ+ + u− τ− (54)

also is deeply involved with the foundations of quantum mechanics. Not
only do orbital and spin components of angular momentum come to-
gether, but they actually are born together, not as twins, but as non-
invariant terms which only become invariant after we take something
from one of them and add it to the other. Spin is as external as orbital,
and orbital is as internal as spin. This confirms at a very profound level
that the concept of particle emerges from the concept of field solutions
of basic equations. The field is not exchange currency (quantized or not)
among merchants (particles).

The use of Clifford algebra to deal with rotations makes into bivec-
tors the imaginary units in the exponents of the phase factors. Because
of the intimate correspondence between idempotents and phase factors
in solutions with symmetry of exterior systems, the same observation ap-
plies to the imaginary units in their associated idempotents. The ε±τ ∗’s
then become ε±I∗ij, where I±ij is 1

2
(1 + aiajdx

idxj) with no sum over re-
peated indices. It is then natural to see here three different generations of
leptons. Spontaneously broken anisotropy of 3-space is needed to justify
this difference, three special directions being associated with three gen-
erations. For this to be consistent with experiment, the Lorentz trans-
formations must remain physically relevant. They do, this consistency
having been known to philosophers of science (Reichenbach, Grünbaum)
and physicists like David Bohm (see his book on special relativity). But
much more remains to be done. Because of the possibilities opened
by this compatibility, something like the weak interactions appears to
be present in Kähler’s quantum mechanics with geometrized imaginary
unit.

Consideration of anisotropy is not an ad hoc assumption for partic-
ular programs by physicists, though it may have been so at some time.
It is brought to the fore by the evolution of the theory of connections,
as explained in our U(1)×SU(2) paper (google “U(1)×SU(2) from the
tangent bundle” to find and freely download it).

The aforementioned geometrization of the imaginary unit leads to
a canonical Kaluza-Klein space, where there are obvious classical and
quantum sectors associated with two 4−D subspaces. In the classical
sector, the constant speed of light reigns supreme. But there is no such
obvious limitation in a purely quantum sector, where information within
a pure field configuration u might travel as superluminal speeds. I said
might, not may, since we do not know better at this point; but this is
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enough to start looking at the issue of teleportation in a new light.
The connection of the last three paragraphs with the split (50) is that

we have three copies of the same, but with each of the three independents
for each copy.

We finally develop the consequences of the existence of a commuta-
tive substructure in the Cartan-Kähler structure. It looks like a Clifford
algebra of sorts, but is not so because it is commutative. Neverthe-
less products in two Clifford algebras are involved in these commutative
products. Since idempotents involve only mirror elements (dx mirrors
i, but dy does not) there is an additional extension of the split (51) by
virtue of this commutativity. For brevity reasons, we shall again speak
of the newly relevant idempotents instead of speaking of the split itself.
The latter involve three idempotent factors, extending the ε±I∗ij with
space translation ones, which thus come in triples, one for each gener-
ation (It might look as six, but there is redundancy when the products
are actually performed). The signature, however, does not allow for
decreasing exponentials, i.e. for phase factors. This implies that the
particles that would correspond to these idempotents do not reach very
far; they start dying as they are born. There can never be enough en-
ergy if the wave function does not decrease with distance, much less if
it increases. Call this confinement. It will look as a surface effect, not
without reason. Translational symmetry when matter is involved must
include surface effects, since the symmetry does not extend to infinity.
Confinement follows.

Much of what has been said in this section may be viewed as specula-
tion. It certainly is. Speculation stars to become theory as it gains ever
more sophisticated mathematical representation. The bridge between
theory and experiment is very large, as Einstein said. No single person
can build alone the large bridges that the advanced state of the physics
makes necessary when its foundations are concerned. But how would
you interpret the mathematics we have developed in the hypothetical
physical situations to which this mathematics might apply.
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