
CHAPTER 3: Kähler
Differentiations

Jose G. Vargas

This chapter will be used for the second day of the second phase
of the summer school. Said better, this chapter together with some
complementary work posted in the arXiv will be the source from which
my collaborators will choose what can and should be taught in view
of the available time. I shall try to leave others do the choice so that,
in the end, the instructors of this subject will jointly decide on what
participants will listen to.

These notes are longer than I intended them to be because they
address, in addition, issues that readers with early access to them have
raised. One recurring theme is that the concept of differential r−form
does not quite sink. It is an r−integrand, thus a function of r−surfaces
You evaluate the differential r−form by integrating it on the on the
r−surface. Take 3xdx+ dy. This does not mean 3x∆x+ ∆y regardless
of how small ∆x and ∆y may be. We rather have∫ x+∆x, y+∆y

x, y

3xdx+ dy =

[
3x2

2
+ y

]x+∆x, y+∆y

x, y

= 3x∆x+
3

2
(∆x)2 + ∆y.

It is at this point that, if and only if ∆x is arbitrarily small we can
validate the expression 3x∆x + ∆y. A differential form is nothing like
an infinitesimal change or anything of the sort. The traditional inter-
pretation of a differential form as an infinitesimal begs the definition of
infinitesimal.

If there is anything that could be a little bit difficult to understand
is what does it mean that dx2 = dy2 = 1 (also written as dx ∨ dx =
dy ∨ dy = 1). But this is just a particular case of what does it mean
that the dot product of a differential r−form and a differential 1−form
is a differential (r − 1)-form? This question, specially in the particular
case of dx2 = dy2 = 1 because it is so simple, is clamoring for something
more sophisticated and to which we have referred in the past as the
Cartan-Kähler calculus. But we are not yet ready for that!
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We insist on a point made in the previous chapter, namely that we
write dx2 = dy2 = 1 only if x and y are Cartesian coordinates. In
general, the differential 1−forms whose square is ±1 are those which
orthonormalize the metric when it is viewed as a quadratic differential
form. This quadratic differential form is a 2−tensor built upon a module
of differential 1-forms by tensor product. It does not belong to the Kähler
algebra, but one can have it in parallel to it. You would have to wait
for a Cartan-Kähler calculus for a better course of action.

As a concession to those who cannot live with formulas like dx2 =
dy2 = 1, consider the following example:

(du)2 =

(
∂u

∂x
dx+

∂u

∂y
dy

)2

=

(
∂u

∂x

)2

+

(
∂u

∂y

)2

.

You might wish to stop at ,

(du)2 =

(
∂u

∂x

)2

dx2 +

(
∂u

∂y

)2

dy2 =

(
∂u

∂x

)2

dx · dx+

(
∂u

∂y

)2

dy · dy

and keep going until you would have to actually use it for something.

1 Differentiations

In Kähler’s work, all differentiations other than partial differentiation
are obtained from the so called covariant derivative. We refer readers to
chapter one for the basic concepts at a deeper level than here, as we do
not presently require as deep a knowledge of differential geometry as is
the case there.

In this chapter, we shall deal only with scalar-valued differential
forms. And we shall refer to greater valuedness only occasionally, for
the purpose of achieving deep understanding of some important issue.

In order to provide early perspective to those who have already
worked at a deep level with differential forms or Clifford analysis, we
used the term divergence to what, from this point on, will be referred
to as interior derivative. The reason is that the term divergence does
not capture the richness and difference with other calculi of the Kähler
calculus (KC). In this calculus, the interior derivative of a vector field is
zero. So, it is not desirable to use the term divergence for the interior
derivative. On the other hand, the interior derivative of a differential
1-form takes the form of the divergence of what is referred to as the
divergence of a vector field in the standard literature. From the per-
spective of the KC, concepts that in the vector calculus are assigned
to r−tensors should be attributed to differential r−forms. That frees
the valuedness structures (built upon contravariant and covariant vector
fields) for other purposes.
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1.1 Kähler’s approach to covariant differentiation

Readers may start this chapter by simply accepting formula (1.5) be-
low, and looking at the text up to that formula only anecdotally. This
amounts to accepting without proof Eq. (1.5) rather than doing so with
equation (1.2). If they want to know better, they should read as far as
they can the first chapter and then returning here.

Kähler represented tensor-valued differential forms with the notation

u
j1...jp
i1...ip

= a
j1...jq
i1...ipk1...km

dxk1 ∧ . . . ∧ dxkm . (1.1)

He then proceeded to introduce in ad hoc manner a concept of covariant
differentiation of tensor-valued differential forms as follows:

dha
k1...kµ
i1...iλ l1...lp

=
∂

∂xh
a
k1...kµ
i1...iλ l1...lp

+

+ Γk1hra
r...kµ
i1...iλ l1...lp

+ ...+ Γ
kµ
hra

k1...r
i1...iλ l1...lp

− Γrhi1a
k1...kµ
r...iλ l1...lp

+ ...+ Γrhira
k1...kµ
i1...r l1...lp

− Γrhl1a
k1...kµ
i1...iλ r...lp

+ ...+ Γrhlra
k1...kµ
i1...iλ l1...rp

, (1.2)

where the Γ’s are the Christoffel symbols. There is here not only a
matter of contents but also of notation. The use of components to such
a large extent is reminiscent of the tensor calculus.

For several chapters, we shall be interested only in scalar-valued dif-
ferential forms. Hence, we may ignore lines 2 and 3 and write

dha l1...lp =
∂

∂xh
al1...lp − Γrhl1a r...lp + ...+ Γrhlra l1...r. (1.3)

Kähler invoked the equation

ωki = Γkij · dxj, (1.4)

which may mean different things to those who are not familiar with
equations of structure. He used (1.4) to rewrite (1.3) as

dmu =
∂u

∂xh
− ω r

m ∧ eru. (1.5)

So, there is a term additional to the partial derivative. It is zero if we
have Cartesian or pseudo-Cartesian (if you prefer to use this term when
dealing with pseudo-Euclidean spaces). We shall barely need to use it
in this course; we can do very much without it.

In deriving Eq. (1.5), Kähler paid the price of going against the nat-
ural order of things, namely the one that we proposed in chapter 1; the
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foregoing formula (1.4) should precede formula (1.3). More importantly,
we showed that one does not need to derive (1.5), much less memorize
this and many other formulas. We shall now show —only for those really
interested— how (1.5) can be derived by resorting to the equations of
structure of a manifold endowed with a metric but not with an affine
structure. But even if we have an affine structure where the affine con-
nection is not Levi-Civita’s, there are issues for which the affine structure
is not relevant, but the Christoffel symbols are. When the symbols Γkij
are the Christoffel symbols (most of the time from now on), we should
not forget that they were born half a century before they were seen as
a tool for parallel transport, simultaneously by Levi-Civita, Hessenberg
and Schouten.

1.2 Cartan’s-like approach to covariant differentia-
tion

Cartan did not deal explicitly with the issue of covariant differentiation.
His exterior derivative of scalar-valued differential forms and of vector-
valued differential forms are equivalent to what, in the modern literature,
are known as exterior and as exterior covariant derivatives (or simply
covariant derivatives for tensor fields). Something similar is the case with
Kähler, although the latter paid more attention to tensor-valuedness and
less attention to structure than Cartan. Let us then proceed like the
latter would have done if they had explicitly considered covariant and
interior derivative.

At its most general, a differential form u will be a sum of terms of
the form α = a ω1 ∧ ... ∧ ωs ∧ ... ∧ ωm on some differentiable manifold
of dimension n ≥ m. Let us exterior differentiate a monomial α = a
ω1∧ ...∧ωs∧ ...∧ωm, and then postulate the distributive property of dh.
Proceeding in this way, we recover the exterior calculus and the essence
of a reinterpreted vector calculus.

Before differentiating each ωi, we move it to the front and introduce
alternating factors 1 and −1. So, with obvious simplification of notation,
and with 1...s̄...m meaning the absence of s,we have

dα = da∧ω1...m+
s=m∑
s=1

a(−1)s−1dωs∧ω1...s̄...m = da ω1...m+
s=m∑
s=1

dωs∧esα.

(1.6)
But

s=m∑
s=1

dωs ∧ esα = dωr ∧ erα, (1.7)

with summation from r = 1 to r = n and not just to m. This is because
erα is ωr ·α and ωr ·ωi = δir. terms on the right where i is greater than m
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do not contribute to the sum ωr · α. Equation (1.1) can thus be written
further as

dα = a/h ω
h ∧ ω1...m + dωr ∧ erα, (1.8)

with a/h defined by da = a/i ω
i. We next use

dωr = ωk ∧ ω r
k = −Γ r

k hω
h ∧ ωk = ωh ∧ (−Γ r

k hω
k). (1.9)

Hence
dα = ωh ∧ a/h ω1...m − ωh ∧ (−Γ r

k hω
k) ∧ erα, (1.10)

We define the covariant derivative dhα as

dhα = a/h ω
1...m − Γ r

k hω
k ∧ erα. (1.11)

Under the distributive property of differential operators with respect to
the sum, we further have

dhu =
∂u

∂xh
− ω r

h ∧ eru, (1.12)

for an arbitrary differential form u, whether of homogeneous grade or
not. That is what Cartan would have done.

We are now interested in connecting with Kähler’s work, i.e. in
specializing this to coordinate bases. In general bases, the Γ r

k h are
defined by ω r

k = Γ r
k hω

h and are not in general equal to the Christoffel
symbols, which constitute the particular cases for coordinate bases. In
terms of them, we have. In terms of coordinate bases

Γ r
k h = Γ r

h k ...Γ r
k hdx

k = Γ r
h kdx

k = ω r
h . (1.13)

1.3 The Kähler derivative

The Kähler differential is defined as

∂u = dxh ∨ dhu = dxh ∧ dhu + dxh · dhu = du+ δu, (1.14)

where
du = dxh ∧ dhu, δu = dxh · dhu. (1.15)

Clearly

∂u = dxh∨
(
∂u

∂xh
− ω r

h ∧ eru
)

= dxh∨ ∂u

∂xh
−dxh∨(ω r

h ∧eru). (1.16)

We further have

∂u = dxh ∨ ∂u

∂xh
− dxh ∧ ω r

h ∧ eru − dxh · (ω r
h ∧ eru). (1.17)

Since dxh ∧ ω r
h equals zero, we finally have

∂u = dxh∨ ∂u

∂xh
− dxh ·(ω r

h ∧eru) = dxh∨ ∂u

∂xh
− eh(ω r

h ∧eru). (1.18)
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1.4 Leibniz rules

You should be able to show that

dh(u∨v∨w∨...) = dhu∨v∨w∨... + u∨dhv∨w∨... + u∨v∨dhw∨... + ...
(1.19)

and that

dh(u∧v∧w) = dhu∧v∧w∨ ... + u∧dhv∧w∨ ... +u ∧v∧dhw∨ .... + ...
(1.20)

We have used so many terms in order to emphasize the lack of alternation
of positive and negative signs. The proofs, essentially the same in both
cases, are obvious by showing that, at each point, we can make ω r

h

equal to zero. The justification of making this annulment is specially
simple for the Christoffel symbols by resorting to the equation for the
geodesics. It can also be achieved —in a different and less easy way—
in more general cases, as per section 8.4 of my book. We then have
the Leibniz rule for the partial derivative . Since the proof is valid at
each point independently of what happens at other points, and since the
result involves only invariant terms, the proof is complete.

An important rule to accompany the exterior differential of an exte-
rior product of differential forms is the Kähler derivative of the Clifford
product of differential forms. The rule is

∂(u ∨ v) = ∂u ∨ v + ηu ∨ ∂v + 2ehu ∨ dhv (1.21)

The symbol η stands for changing every differential 1−form factor by its
opposite. So ηαr equals αr or −αr depending on whether the grade of
αr is even or odd. The symbol eh is defined by its action ehu = ωh · u.

We proceed to prove it. In terms of coordinate bases, the differenti-
ation ∂u was introduced as

∂u = dxh ∨ dhu. (1.22)

Hence

∂(u ∨ v) = dxh ∨ dh(u ∨ v) = dxh ∨ dhu ∨ v + dxh ∨ u ∨ dhv (1.23)

In the last term, we want to move dxh past u, for which purpose, we
solve for dxh ∨ u in

dxh ∨ u − ηu ∨ dxh = 2dxh · u = 2ehu (1.24)

and replace it in (1.24). Equation (1.21) follows.

31



It is worth considering other “Leibniz”, not so much because they
are going to be used, but to illustrate that one has to be careful and not
extrapolate unduly. Without proof:

d(u ∨ v) = du ∨ v + ηu ∨ dv + ehu ∨ dhv − ηdhu ∨ ehv. (1.25)

Notice the absence of exterior products.
Let us do an example. Let z be defined as z = x+ ydxdy. Then

z2 = x2 − y2 + 2xydxdy. (1.26)

Its exterior derivative is

d(z2) = 2xdx− 2ydy. (1.27)

Assume now that we wish to apply the Leibniz rule that we have just de-
rived. The sum of the first two terms can be written as 2dx∧(x+ydxdy)
which is 2xdx. For the last two terms (actually four when developed) we
use

exz = ydy, eyz = −ydx, dxz = 1, dyz = dxdy,

where ex = e1 and ey = e2. We use these equations to get the sum of
those four terms, which yield ydy − ydy − ydy − ydy = −2ydy. This
checks the formula. It was not pretty. In this case we could first compute
the product, so that we did not need to apply the rule, but there will be
cases where there may be no alternative to use that “Leibniz rule”.

A similar complex rule bearing structural similarity is

∂(u ∧ v) = ∂u ∧ v + ηu ∧ ∂ ∧ v + ehu ∧ dhv + ηdhu ∧ ehv. (1.28)

In the derivations of the formulas for d(u∨v) and ∂(u∧v), one simply
resorts to the contractions of components of covariant derivatives with
the elements of a basis of differential 1−forms.

1.5 Examples of covariant and interior differentia-
tions

We proceed to provide examples of interior differentiation of scalar-
valued differential 1-forms. Under a different notation, you can find
these formulas in his 1961 paper. I post them here since one is not used
to hear or speak of covariant derivatives of the differentials of the coor-
dinates. It is only a matter of applying the formulas that we have given.
Instead of indices 1, 2, 3 and 4, I shall use ρ, φ, z and t.

The only non-null Christoffel symbols are

Γ ρ
φ φ = −ρ, Γ φ

ρ φ = −1

ρ
= Γ φ

φ ρ.
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The ω’s that we require are

ω ρ
φ = −ρdφ, ω φ

ρ =
dφ

ρ
, ω φ

φ =
dρ

ρ
. (1.29)

The covariant derivatives then are

dρu =
∂u

∂ρ
− ∂φ

∂ρ
∧ eφu, dzu =

∂u

∂z
, dtu =

∂u

∂t
,

dφu =
∂u

∂φ
+ ρdφ ∧ eρu−

dρ

ρ
∧ eφu. (1.30)

Exercise. Find the divergence in cylindrical coordinates in
3-D Euclidean space. Needless to say that you could follow the same
process for arbitrary coordinate systems.

We want to make an important clarification to preempt confusions.
When one computes the interior derivative —in say cylindrical coordinates—
of a differential 1−form, one gets the same expression that one gets in
the literature for the divergence of a vector field. We are not dealing
here with tensor-valued differential forms, and with vector-valued ones
in particular. If one used information given in chapter 1 or the begin-
ning of chapter 2 to compute the interior derivative of a vector field, you
would get zero. the reason is simple. The covariant derivative of a vector
field in the sense of KK is another vector-valued 0−form. Its interior
contraction with differentials 1-forms is zero (you get scalars with inte-
rior contraction of differential 1−forms with differential 1−forms, not of
scalars with differential 1−forms, regardless of valuedness. Does it con-
tradict the physics? No, in the KC, the so called magnetic vector field is
a differential 2−form, and the vector potential is a differential 1−form.
The divergence of the magnetic vector field is obtained as the exterior
derivative of the magnetic differential 2−form. In the next section, we
shall understand this a little bit better in the next section when we deal
with the concepts of Hodge duals and coderivative.

Consider now the metric. There are definitions for all tastes. The
symmetric quadratic differential form gijdx

idxj is a tensor product of
differential 1-forms is a tensor product, gijdx

i⊗dxj and does not belong
to what we have called Kähler algebra, which is a Clifford algebra of
scalar-valued differential forms, not a tensor algebra. In the KC, the
metric tensor of which one says that its covariant derivative is gijei⊗ej,
equivalently gije

i ⊗ ej. In other words it is a 2-tensor-valued differential
0−form.
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2 Hodge duality, co-derivative and Laplacians

The term duality has several meanings in algebra, calculus and geometry.
Given a vector space, one speaks of its dual vector space. Given an
n-dimensional Euclidean space, one speaks of the (n − 1)-plane dual
of a point. Hodge duality is a third concept not too different from
the previous one but more comprehensive. It is important because the
concept of co-derivative in computationally less comprehensive calculi
resorts to it to deal with situations which are better addressed with the
interior derivative of the Kähler’s calculus.

The “co-derivative version” of the interior derivative form allows one
to understand how versions of the Laplacian which apparently have dif-
ferent numbers of terms are all part of the same general formula which
takes simpler forms depending of the object to which it is being applied.

2.1 Hodge duality

Let us use the symbol z to refer to the unit differential form in the
Kaehler algebra. It is undefined up to the sign, depending on the order
in which the differential 1−form factors are chosen. As defined before,
let (ωi) be a set of n differential 1−forms that orthonormalize the met-
ric. Let the symbol z denote the unit hypervolume, i.e. the differential
n−form

z = ω1 ∧ ω2 ∧ ... ∧ ωn. (2.1)

This is undefined by a sign depending on the order in which we pick the
elements of the basis of differential 1−forms. We shall choose the order
so that this expression coincides with

z = |gij|1/2 dx1 ∧ dx2 ∧ ... ∧ dxn. (2.2)

If you were hesitating as to whether the exponent of |gij| is +1 or −1,
just check with the element of area in polar coordinates.

We define the Hodge dual (in the following, called simply the dual)
∗u of a differential form u as

∗u = u ∨ z, (2.3)

For positive definite signature, we have

∗∗ = zz = (−1)

(
n
2

)
, z−1 = (−1)

(
n
2

)
z, ∗−1 = (−1)

(
n
2

)
∗ .

(2.4)

2.2 The co-derivative

The interior derivative of a scalar-valued differential form u is defined in
the literature as ∗−1d ∗ u or as ∗ d ∗ u, which may differ by the sign.
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We retrospectively choose the first of these options, for the same reason
that Kähler must have chosen it. Indeed, let us compute. The formula
for the exterior derivative of the Clifford product u ∨ z reduces to just
two terms:

d(u ∨ z) = du ∨ z − ηdh ∨ ehz. (2.5)

Hence, it is clear that

∗−1d ∗ u = (−1)

(
n
2

)
d(u ∨ z) ∨ z = du − (−1)

(
n
2

)
ηdhu ∨ ehz ∨ z. (2.6)

On the other hand,

(−1)

(
n
2

)
ehz ∨ z = (−1)

(
n
2

)
ωh ∨ z ∨ z = ωh. (2.7)

Hence,
∗−1d ∗ u = du − ηdhu ∨ ωh (2.8)

Consider next the dot product ωh · dhu,

2ωh · dhu = ωh ∨ dhu− ηdhu ∨ ωh. (2.9)

We thus have
∗−1d ∗ u = du+ 2δu− ∂u = δu. (2.10)

We have thus proved that the co-derivative of a scalar-valued differential
form is nothing but the inverse Hodge dual of the exterior derivative of
the Hodge dual. Notice that, in proving this result, we did not need to
assume anything about the specific valued ness of u. The Hodge dual
here is defined in the Kähler algebra.

2.3 Laplacians

The Laplacian of a differential r−form is defined as ∂∂. We then have

∂∂ = (d+ δ)2 = dd+ dδ + δd+ δδ. (2.11)

In general, none of these terms can be ignored. However, one is used to
see simpler forms. Indeed, if u is scalar valued, ddu = 0. On the other
hand, we have, with an abuse of parentheses for greater clarity,

δδu =
(
d
{

[d(uz)] z−1
}
z
)
z = (dd(uz)) z. (2.12)

If ddu = 0, then δδu also is zero. Hence the Laplacian of scalar-valued
differential forms can be written simply as

∂∂ = dδ + δd. (2.13)

Since the interior derivative of scalar-valued differential forms is zero,
the Laplacian for these forms is then given by just the term δd. This is
similar for what in the vector calculus is the divergence of the gradient.

Exercise. Show that ∂∂r = 2
r
.
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3 Harmonic, strict harmonic and constant differen-
tials

We now deal with certain types of differential forms of special interest
from a perspective of differentiation. We go from the east to the most
specialized.

3.1 Harmonic and strict harmonic differentials

A differential form α is called harmonic if its Laplacian is zero. It is
called strict harmonic if ∂α = 0. The statement ∂α = 0 is clearly equiv-
alent to dα+ δα = 0. Clearly, a strict harmonic differential is harmonic.
In general, harmonic differentials are not strict harmonic. There are
exceptions. If a differentiable manifold is oriented and compact and its
metric is positive definite, harmonicity implies strict harmonicity (See
Kähler 1962, section 21). Hence, in Euclidean spaces, finding harmonic
and strict solutions is the same problem. Structurally, the problem of
finding solutions of ∂α = 0 is cleaner than finding solutions of ∂∂α = 0.
But, the richness of solutions is such that one needs far more theory
than this in order to solve the problem without resorting to the method
of separation of variables.

Strict harmonic differential forms play a major role in the subalgebra
of even differential forms of the Kähler algebra of 2-D Euclidean space.

As an immediate consequence of the definitions, an even differential
form u + vdxdy is strict harmonic if and on it satisfies the Cauchy-
Riemann conditions

u,x = v,y u,y = −v,x . (3.1)

In particular, x+ ydxdy is harmonic. It is an immediate consequence of
these equations that the equations

U =

∫
udx− vdy, V =

∫
udy + vdx (3.2)

define forms U and V , since the integrability conditions are the Cauchy-
Riemann equations. We thus have

dU = udx− vdy, dV = udy + vdx (3.3)

and, therefore,

U,x = u = V,y U,y = −v = −V,x . (3.4)

These equations for the partial derivatives of U and V take the form of
Cauchy-Riemann conditions. Hence, the differential forms U + V dxdy
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also are strict harmonic. U and V are determined only up to additive
differential forms whose covariant derivative is zero, since they do not
change the Kähler derivative.

Functions of strict harmonic differential forms need not be strict har-
monic, but most common functions are. Whether they are or not is the
same issue in the literature of whether or not a function of a complex
variable is analytic or not.

3.2 Constant differentials

It seems that the term constant differential form has not been used by
anybody but Kähler. So his use is justified when it does not overlap and
conflict with prior use of the same term in the literature. His choice of
that term is not very fortunate in that he uses it not only for scalar-
valued differential forms —where there is no problem— but also for
tensor-valued differential forms, where the conflict arises.

Define constant differential forms, c, as those whose covariant deriva-
tives dhu are zero. This is a more restrictive concept than ∂u = 0. It
is easy to show that any exterior polynomial with constant coefficients
in the differentials of the Cartesian coordinates is a constant differen-
tial form, but not if those coefficients are not constant. This is easy to
prove by building the argument upon observation of what happens when
we build the differentials of, say, f(x, y)dx ∧ dy and f(x, y, z)dx ∧ dy.
As for polynomials on the differential of other coordinates, suffice to
observe that dr has interior derivative 2/r. Hence dhr cannot be zero.
But this does not impede that polynomials in those differentials with
non-constant coefficients may happen to be constant differentials. An
example of this is ρdρdφ, which is the unit surface element, dxdy, but
expressed in terms of cylindrical coordinates. The unit volume differ-
ential is a constant differential, since we can always choose coordinates
such that at any specific point they behave as if they were Cartesian
coordinates, this is to say that the metric reduces to the form

∑
(dxi)2

at the given point.
The rules for the different versions of the Leibniz differentiation read-

ily yield

d(u∧c) = du∧c, ∂(u∨c) = ∂u∨c, (3.5)

∂(u∧c) = ∂u∧c+ ηdhu∧ehc, d(u∨c) = du∨c− ηdhu∨ehc. (3.6)

The equation ∂(u∨ c) = ∂u∨ c is a most important one vis a vis the
foundations of quantum mechanics. Recall that we had the equation

u = +u+ ε+τ+ + +u− ε+τ− + −u+ ε−τ+ + −u+ ε−τ−, (3.7)
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whose importance cannot be overemphasized The operators ε±, τ± and
ε±τ ∗ are constant idempotents. Hence, we have in particular

∂u = (∂ +u+) ε+τ+ + (∂ +u−) ε+τ− + (∂−u+) ε−τ+ + (∂−u+) ε−τ−,
(3.8)

and similarly for decompositions involving only the ε± or the τ±. Let us
post-multiply by ε+τ+. We get

(∂u)ε+τ+ = (∂ +u+)ε+τ+. (3.9)

We could similarly have multiplied by any other of the ε±τ ∗ and have
obtained a parallel result. Because of the form of the Kähler calculus,
profound implications of this are around the corner. Several applications
will be shown in the next chapter.

Consider now the metric tensor, gije
i ⊗ ej, in order to illustrate the

issue of terminology to which we referred above. Under Kähler’s termi-
nology, this tensor field is a constant tensor-valued differential 0−form.
He could also consistently call constant tensor field since he uses tensor-
valued differential 0−form and tensor field as synonymous. So, we would
be using the term constant tensor field for tensor fields which are not
constant. We have described the actual situation in a simplified way
since, for his argument, he actually creates a tensor field that he denotes
as (dx ∨ dx) whose components are given by (dx ∨ dx)ik = dxi ∨ dxk.
Be as it may, the fact remains that he uses the term constant to refer
to something where nothing appears to be constant; the constancy is a
combination of terms, derivatives among them. Fortunately, we do not
have to deal with tensor-valuedness in this course. So, we do not have
to worry with matters of notation.

4 Application 1: Helmholtz theory in 3-D Euclidean
space

We now derive the differential 1−forms version of Helmholtz theorem.
It amounts to the integration of a differential 1−form whose exterior
and interior derivatives are given and satisfies the right conditions. We
then proceed to obtain from this result the integration of a differential
2−form also given by its exterior and interior derivatives. Similar the-
orems in non-Euclidean spaces and higher dimensions will be proved in
later chapters, where we prove a uniqueness theorem which is required
as a prerequisite for the validity of the proof. this requirement also ap-
plies here. but we proceed without it since the results parallel those of
Helmholtz theorem in the vector calculus where the uniqueness theorem
is well known. So, for the time being, we trust that such a theorem also
exists for differential 1−forms. The contents of this section, is virtually
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the same as in the substantive part of our paper “Helmholtz theorem for
differential forms in 3-D Euclidean space”, posted in arXiv. We would
not reproduce it here except for the following.

Readers of books dealing with differential forms will have noticed
that they often have a 1

r!
at the front of expressions. This is because

those are summations over all permutations of indices. As an example,
we cannot write dx1∧dx2 as

∑
dxi∧dxj with i = 1, 2 and also j = 1, 2.

We have to introduce the factor 1/2 and the minus sign, i.e. dx1 ∧
dx2 = (1/2)(x1 ∧ dx2− x1 ∧ dx2). Once we have taken care of this issue,
we still have to contend with the fact that we may have summation
over the different elements in a basis of r−forms. This is taken care
of with the convention that summations over repeated indices are only
over independent elements, meaning that the notation applies to the
form that differential forms take after we have reduced say (1/2)(x1 ∧
dx2 − x1 ∧ dx2) to dx1 ∧ dx2. Once we have done it, we still have other
dxi ∧ dxj pertaining to other pairs of indices to cover all options when
dealing with differential r−forms. And then we may have to sum over
the different grades. So, we shall use the notation aRdx

R to sum from
R = 1 to R = 2n, which is the dimension of the algebra. If some u is
a differential r−form, it means that all aR are zero except, at most, a
number

(
n
r

)
of them, which is the dimension of the subspace of differential

r−forms. In this section, we shall acquire plenty of practice with this.
Finally, we have virtually shown earlier in this chapter that the def-

inition of the Laplacian of a scalar-valued differential 1−form yields an
operator that is the same as in the standard vector calculus. We thus
take advantage of knowledge by readers of, for example, what the Lapla-
cian of ∂∂ 1

r
is.

4.1 Helmholtz Theorem for Differential 1-Forms in
3-D Euclidean Space

We compute with Cartesian coordinates. The results obtained being
invariant, they retain their form in arbitrary bases of differential forms.

Let w denote the unit volume differential form in dimension three.
(We reserve the letter z for arbitrary dimension). And let us define r12

as
r12 =

[
(x− x′)2 + (y − y′)2 + (z − z′)2

]−1/2

Theorem: Differential 1−forms that are smooth and vanish suffi-
ciently fast at infinity can be written as

α(r) = − 1

4π
dI0 − 1

4π
δ(dxjdxkI i), (4.1)
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I0 ≡
∫

1

r12

(δ′α′)w′, I i ≡
∫

1

r12

d′α′ ∧ dx′i, (4.2)

with summation over the three cyclic permutations of 1,2,3.
Proof : By the uniqueness theorem and the annulment of dd and δδ,

the proof reduces to showing that δ and d of espectively I0 and I i yield
dα and δα.

Since δdI0 = ∂∂I0, we write −(1/4π)δdI0 as

−1

4π
∂∂I0 =

−1

4π

∫
E′

3

(∂∂
1

r12

)(δ′α′)w′ =
−1

4π

∫
E′

3

(∂′∂′
1

r12

)(δ′α′)w′ = δα,

(4.3)
after using the relation of ∂∂ to the Dirac distribution.

For the second term, we use that dδ = ∂∂ − δd when acting on
dxjdxkI i. We move ∂∂ past dxjdxk. Let α be given as al(x)dxl in terms
of the same coordinate system. We get d′α′∧dx′i = (a′k,j −a′j,k )w′. The
same property of ∂∂ now allows us to obtain dα.

For the second part of the second term, we apply δd to dxjdxkI i :

δd(dxjdxkI i) = δ

(
w
∂I i

∂xi

)
= wd

(
∂I i

∂xi

)
= wdxl

∂2I i

∂xi∂xl
=

= wdxl
∫
E′

3

[
∂2

∂x′i∂x′l

(
1

r12

)]
(a′k,j −a′j,k )w′. (4.4)

We integrate by parts with respect to x′i. One of the two resulting terms
is:

wdxl
∫
E′

3

∂

∂x′i

∂
(

1
r12

)
∂x′l

(a′k,j −a′j,k )

w′. (4.5)

Application to this of Stokes theorem yields

wdxl
∫
∂E′

3

∂
(

1
r12

)
∂x′l

(a′k,j −a′j,k )dx′jdx′k. (4.6)

It vanishes for sufficiently fast decay at infinity.
The other term resulting from the integration by parts is

−wdxl
∫
E′

3

∂
(

1
r12

)
∂x′l

∂

∂x′i
(a′k,j −a′j,k )w′, (4.7)

which vanishes identically (perform the ∂
∂x′i

differentiation and sum over
cyclic permutations). The theorem has been proved.
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4.2 Helmholtz Theorem for Differential 2−forms in
E3

The theorem obtained for differential 1−forms, here denoted as α, can
be adapted to differential 2−forms, β, by defining α for given β as

α ≡ wβ, β = −wα. (4.8)

Then, clearly,

wδ(wβ) = −dβ, wdβ = δ(wβ). (4.9)

Helmholtz theorem for differential 1−forms can then be written as

wβ = − 1

4π
d

(∫
E3

δ′(w′β′)

r12

w′
)
− 1

4π
δ

(
dxjk

∫
E3

d′(w′β′) ∧ dx′i

r12

)
,

(4.10)
and, therefore,

β =
1

4π
wd

(∫
E3

δ′(w′β′)

r12

w′
)

+
1

4π
wδ

(
dxjk

∫
E3

d′(w′β′) ∧ dx′i

r12

)
.

(4.11)
The integrals are scalar functions of coordinates x. We shall use the
symbol f to refer to them in any specific calculation. In this way, steps
taken are more easily identified.

The first term in the decomposition of β, we transform as follows:

wdf = (∂f)w = ∂(fw) = δ(fw), (4.12)

where we have used that w is a constant differential.
For the second term, we have:

wδ(dxjkf) = w∂[wdxif)]− wd[fdxjk)]. (4.13)

The first term on the right is further transformed as

w∂(wdxif) = wwdxi∂f = −dxidf, (4.14)

where we have used that wdxi is a constant differential, which can be
taken out of the ∂ differentiation. For the other term, we have

−wd(fdxjk)] = −wdf ∧ dxjk = −wf,iw = f,i = dxi · df. (4.15)

From the last three equations, we get

wδ(dxjkf) = −dxidf + dxi · df = −dxi ∧ df = d(dxif). (4.16)

41



In order to complete the computation, we have to show that d(wβ)∧
dxi can be written as δβ ∧ dxjk. This can be shown easily by direct
calculation. Let α be given as aidx

i. Then d(wβ) ∧ dx1 = dα ∧ dx1 =
(a3,2 − a2,3)w. On the other hand, β = −aidxjk and

δβ = (a3,2 − a2,3)dx1 + cyclic permutations. (4.17)

Hence δβ ∧ dx23 = (a3,2 − a2,3)w and, therefore,

d(wβ) ∧ dx1 = dα ∧ dx1 = δβ ∧ dx23, (4.18)

and similarly for the cyclic permutations of the indices.

5 Application 2: Cauchy like calculus with real dif-
ferential forms

In chapter 2, we dealt with algebraic issues which were sufficient by
themselves to compute without resort to complex variable theory certain
types of real integrals which are usually solved using that theory. We
shall now produce theory that involve operations which differential forms
and that give results as if we were computing complex integrals.

When this author did all this work on this subject (two papers in
arXiv), it was not too clear to him what was the most important fea-
ture of what he was doing. He was distracted by whether an analytic
function was defined by a power series (Weierstrass point of view) or
by compliance with the Cauchy-Riemann conditions (Cauchy’s point of
view). But the difference is more profound; it lies somewhere else. We
proceed to explain this at length in subsection 5.3, after we had intro-
duced the basis concepts.

The theory of complex variable not only deals with the solution of
those real integrals, but is also used to solve integrals which are not
real. The question then is whether one can extend the theory of real
differential forms so that it also comprises this new situation. One can
extend it, and that is what this section is about.

5.1 Representation with real differential forms of
complex integrals

This section supersedes subsections 2.3 and 3.2 of our paper “Real Ver-
sion of Calculus of Complex Variable: Cauchy’s Point of View”. That
subsection 2.3 is confusing and may be even misleading. It will now be
made unnecessary. As for subsection 3.2, it is clear but irrelevant since it
does not clearly address the issue that will be considered here under the
term antivaluation. This is the operation opposite of valuation, rightly
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considered there as in here. We think that its naturalness is here made
much more clearly.

5.1.1 Valuations

The equivalence between i and dxdy is only algebraic. The unit i is a
constant and, as such, it can be taken out of an integral sign. But one
cannot do so with dxdy, since it would change the nature of the inte-
gral. So, one has to introduce a theory with real differential forms that
represents the calculus of complex variable through expressions where i
is outside the integral. This takes place as follows.

With f(z) = u + iv and dz = dx + idy (which is correct, but which
we might also write as ∂z = ∂x+ i∂y), we have∫

f(z)dz =

∫
f(z)dx+ i

∫
f(z)dy =

∫
(u+ iv)dx+ i

∫
(u+ iv)dy =

=

∫
udx− vdy + i

∫
udy + vdx = U + iV. (5.1)

for analytic functions, i.e. satisfying the Cauchy-Riemann conditions.
Hence, we ignore the first equalities and focus on the last one. In this
section, we use the symbol w to refer to u + vdxdy. The last equation
can then be written as∫

udx− vdy + dxdy

∫
udy + vdx = U + V dxdy, (5.2)

We replace integration
∫
c
f(z)dz on a curve of the complex plane

with “valuation” 〈w〉c of an edif, u + vdxdy, on a curve c of the real
plane:

〈w〉c ≡
[∫

c

wdx

]
+ dxdy

[∫
c

wdy

]
, (5.3)

The integrability conditions for these integrals to not depend on c but
only on its end points are the Cauchy-Riemann relations. For u+vdxdy,
this is the strict harmonic differential condition. “Valuation potentials”

〈w〉 = U + V dxdy =

∫
udx− vdy + dxdy

∫
(udy + vdx) (5.4)

then exist. Of course, U and V are undefined up to integration constants.
The valuation on a closed curve (on simply connected manifolds) is zero.
This is the Cauchy-Goursat theorem for strict harmonic differentials. In
domains that are not simply connected, we surround the poles enclosed
by closed curves C with equally oriented circles ci, all of them with the
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same orientation as C and containing one and only one pole each. We
then have

〈w〉C =
∑
i

〈w〉ci . (5.5)

From now on, let us denote U + V dxdy as W. We have

∂W = dU + dV dxdy. (5.6)

Since
dU = udx− vdy, dV = udy + vdx, (5.7)

we obtain
U,x = u = V,y U,y = −v = V,x . (5.8)

W is, therefore, strict harmonic. Notice that we have not spoken of
f(x+ydxdy) inside of an integral sign. The Cauchy theory of differential
forms belongs to the elements of the algebra of even differential forms,
not to the functions of some other variable.

5.1.2 Antivaluations

The valuation plays the role played by integration in the calculus of
complex variable. We shall refer to u + vdxdy as the antivaluation of
U + V dxdy. It is a simple matter to show that

dxdU = dydV dydU = −dxdV, (5.9)

and
dUdx = dV dy dUdy = −dV dx. (5.10)

The antivaluation can be given in a variety of ways:

u = dx · dU = dy · dV = idy ∧ dU = −idx ∧ dV (5.11)

and
v = dx · dV = −dy · dU = idx ∧ dU = idy ∧ dV. (5.12)

i referring, of course, to dxdy.
To strengthen ideas, let us see what f(z) = z = x + iy, df/dz = 1

corresponds to. We compute the antivaluation for U = x, V = y. We
get u = dx ·dU = dx ·dx = 1 and v = dx ·dV = dx ·dy = 0. So, x+ydxdy
is a primitive of 1. We check it computing the valuation:∫

1dx+ dxdy

∫
1dy = x+ ydxdy. (5.13)
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5.1.3 Cauchy calculus versus exterior and Kähler calculi

The contents of the previous two subsubsections can be taken as the
foundations of a Cauchy calculus of strict harmonic differential forms.
The Cauchy calculus is different from the Kähler calculus of differential
forms, since it is based on a different concept of integration and differ-
entiation. What goes by the concept of integration and differentiation
in the calculus of complex variable has a correspondence in valuations
and antivaluations in the Cauchy calculus of differential forms. The fact
that this calculus uses the Kähler algebra might lead one into confu-
sion. Readers might be right in thinking that this section belongs to the
previous chapter. This is logically correct, but consider this. A Kähler
calculus on a Kähler algebra is far more important than a Cauchy calcu-
lus on the same algebra. It is better to be confused learning this Cauchy
calculus after having learned the Kähler calculus than to be confused
learning the latter after having learned the former.

Let me insist on the point just made. In the Kähler calculus, dif-
ferential r−forms are evaluated (i.e. integrated) on r−surfaces. In the
Cauchy calculus of differential forms presented so far, we “valuate” even
differential forms on curves. The valuation on curves involves the inte-
grating or evaluation on those curves of associated differential 1−forms,
specifically the differential 1−forms udx− vdy and udy + vdx.

dU = udx− vdy, dV = udy + vdx. (5.14)

Properly speaking, an expression such as dz = dx + idy does not
pertain to the complex variable calculus proper, but to the representa-
tion in the plane of differential forms over the complex numbers. The
obtaining of dz through differentiation belongs to the exterior calculus
of these differential forms, not to the calculus of complex variable, where
differentiations take place with respect to z.

Let us use define Z = x+idxdy. It is certainly the case that dz = dx+
idy and that, in contrast, dZ = dx. But, as we have explained, d(z) =
dx+ idy is not a differentiation in the calculus of complex variable and
d(Z) = dx is not a differentiation in the Cauchy calculus of differential
forms. We cannot make anything of this difference.

The differentiation of z in the calculus of complex variable is simply
dz. End of story. We can of course write dz = (dz/dz)dz = dz. In the
calculus of complex variable, the differentiation of x takes place through
the differentiation of x = (z+z∗)/2. This poses problems when trying to
differentiate z∗, for which purpose one resorts to a representation in the
plane. See, for instance, H. Cartan’s “Elementary Theory of Analytic
Functions of One or Several Complex Variables”. He introduces z and z∗

for the first time in his book as follows: “Recall that a complex number
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z = x + iy ... is represented by a point on the plane ... If we associate
with each complex number z = x + iy its ‘conjugate’ z̄ = x − iy...”.
Of course, H. Cartan knows better. Later in his book he considers
differentiations with respect to the complex variables z and its conjugate
z̄ and introduces the Laplacian as ∂2f/∂z∂z̄. And later, when dealing
with n complex variables, he writes

df =
n∑
k=1

(
∂f

∂zk
dzk +

∂f

∂z̄k
dz̄k

)
, (5.15)

for the differential of a function of so called n complex variables. When
this is done, d(x+iy) = dz through a process where x and y are expressed
in complex variable terms.

This discussion was worth writing for an indirect purpose: as refor-
mulated, the exterior calculus of one complex variable can be seen as a
theory of strict harmonic differentials. Forget about functions of x+ iy.
That may be included in the game, specially as a bridge to start the
game, like even the most notable mathematicians do. But, once again,
we did not use x+ydxdy above. And, if one uses it and the likes of it, we
shall have to take into account that the relation between “the complex
variables” x+ ydxdy and x+ zdxdz will not be the same as the relation
between x + ydxdy and z + tdzdt, assuming of course positive definite
metric. Indeed dxdydxdz equals a differential 2−form; dxdydzdt is a
differential 4−form. Its interior derivative is not a differential 1−form.

We have set the stage for a Cauchy theory involving strict harmonic
differential forms in Euclidean spaces of arbitrary dimension, not spaces
of several complex variables. It is a theory much richer than standard
theory of several complex variables.

5.2 Cauchy’s theorems

This subsection should be about Cauchy’s integral formula and Cauchy’s
integral formula for derivatives. They are clearly explained in subsec-
tions 3.1 and 3.3 of our paper “Real Version of Calculus of Complex
Variable: Cauchy’s Point of View”. Although we have said that the
Cauchy theory of differential forms belongs to the elements of the alge-
bra of even differential forms, not to the functions of some other variable,
using the notation f(z) instead of f(x + ydxdy), which in turn we use
there instead of u + vdxdy, has notational advantages. The nature of
those theorems is at the root of those notational advantages.

See the same reference for a couple of exercises.
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