
CHAPTER 4: Relativistic
Quantum Mechanics

Jose G. Vargas

Once again, lecturers will choose from this chapter what they will
teach on day 6 of the summer school.

This chapter was going to be called Kähler equations. I changed the
title when I recently learned that a group of billionaires (like Ambani,
Bezos, Branson, Gates, Ma, Soros, Zuckerberg, etc. is launching a major
clean energy initiative (For fair treatment of those that I have not men-
tioned, please go breakthroughtenergycoalition.com/en) Energy is an
issue for exceptionally good theoreticians, like Einstein in the first half of
the twentieth century (energy of photons, energy equals mc2, the energy-
momentum tensor equals the Einstein tensor) and Julian Schwinger (See
the last section of this chapter for more on Schwinger, the other Feyn-
man or even better) in the second half. The ideas of both, Einstein and
Schwinger, in the last decades of their lives were dismissed. In the last
section, we also say a little bit about the connection between Kähler’s
calculus and Einstein’s failed at unification with teleparallelism.

Kähler’s quantum mechanics (actually, the Kähler equation by itself)
has to do with the initiative of the coalition, even though its proponents
do not know it. It prompts and promises a better understanding of en-
ergy at the quantum level. Present day quantum physics is being built
with inadequate arguments, which are at the root of the spurious emer-
gence of negative energy solutions in Dirac’s theory. It is resolved by
means of so called “hole theory”, where all states with negative energy
are filled and thus constitutes a sea of infinite energy density. Holes (or
lack of negative energy solutions) are interpreted as positrons (A very
good book for all of this is “Relativistic Quantum Mechanics” by J. D.
Bjorken and S. D. Drell, both from the Stanford Linear Accelerator Cen-
ter”; its chapter five is about hole theory). The infinite energy density
of the sea is reduced to still huge finite ones through a couple of inde-
pendent artifacts which do not even give the same results (They actually
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give results that differ by dozens of orders of magnitude). In contrast,
Kähler’s equation entails the emergence of positrons with the same sign
of energy as electrons. Since we reserve that derivation for chapter six,
we send impatient readers to the very end of section 26 of Kähler’s 1962
paper “Der innere Differentialkalkül”.

Also recently —while writing these chapters— I heard again the of-
ten repeated statement that quantum physics and general relativity are
mathematically and conceptually incompatible. But, with the Kähler
calculus, the mathematics of general relativity are contained in the math-
ematics of quantum mechanics. They are not, therefore, mathematically
incompatible. As for conceptual incompatibility, it is not so because of
the nature of the subject but because of the Dirac equation. In his time,
it was a tremendous conquest, but provisional and not quite as intelli-
gible as physics used to be). Its limitations led to misinterpretations as
to the true nature of the field. If, as this author claims, the Kähler cal-
culus is the right equation, the quantum mechanics that ensues is more
about a field in the classical mold rather than about particles and prob-
ability amplitudes. The latter (certainly as well as their square) should
be viewed as derived or emergent concepts. But does one really believe
that the mathematics for both sectors of physics they will incompatible
for ever? We should not replace ”we do not know how to do ...” with
”it cannot be done”. And, fortunately, Kähler’s version of quantum me-
chanics is such that the day to day practice of most of quantum physics
will not change; only the foundations will.

In order to provide an early glimpse of Kähler’s approach to quantum
physics, we shall alter for the summer school what should have been the
order of chapters in the presentation of the theory. In this chapter, we
shall mention, though only briefly, Kähler’s obtaining of the strict har-
monic differentials in 3-D Euclidean space (minus the origin), where they
coincide with the harmonic differentials. Such a study should logically
follow the study of rotational symmetry (chapter 5), which is instrumen-
tal in solving the fine structure of the hydrogen atom. We shall leave for
readers to follow the long calculations directly from the Kähler papers,
which they should be able to read with little knowledge of German after
we have provided here the basic foundations. Chapter 6 will deal with
the conservation law and related applications (the two types of charge,
a uniqueness theorem for integration of Helmholtz type systems, etc.).

Starting with chapter 7, I would present my own work on the Cartan-
Kähler calculus of differential forms, where physics and mathematics
look as if they were the same thing. Fortunately for participants in this
summer school, you will not have to suffer me much longer since, by
then, it will be the early morning of the last day of the school.
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What does all this have to do with the breakthrough energy coali-
tion? A better platform for quantum mechanics is a better platform for
understanding energy. One could bring the Kähler calculus —and thus
quantum physics and the understanding of energy— to greater heights
with an amount of funds that would be pocket money for billionaires,
specially if the funds are used in countries where eager scholars draw
meager salaries. I have written this for the record so that one day, per-
haps not too far for me to see it, mathematically gifted acquaintances
of those billionaires let them know of this opportunity to carry on their
project with the much more sophisticated Kähler theory. It may lead to
less costly and more efficient and environmentally friendly way of obtain-
ing clean energy. Schwinger may have pointed the way with his source
theory, and Kähler mathematics is the right tool to make his theory
more accessible.

1 Kähler equations

With the explicit purpose of accelerating the bringing about of a more
complete picture of what the Kähler calculus has to offer, I am starting
to skip details of computations present in Kähler’s papers.

1.1 Solutions with time symmetry of exterior sys-
tems

The form of solutions with symmetry of exterior systems is independent
of the system itself. We mean what types of factors represent the sym-
metry in solutions that have it. The dependence on coordinates that
are parameters of symmetries is given by a phase factor, and the de-
pendence on their differentials is given by idempotents that are constant
differential forms.

Recall a decomposition such as

u = +u ε+ + −u ε−. (1.1)

It corresponds to time translation symmetry. The phase factor must,
therefore, be e−iEt. As we shall son start to understand and with ~ = 1,
a negative charge solution with time translation symmetry should be
given by

e−iEtR(x, dx)ε−. (1.2)

By virtue of the fact that the ε± are constant differentials, we shall have
equations

∂u = (∂ +u) ε+ + (∂ −u) ε−, (1.3)
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implicit in the more comprehensive equation

∂u = (∂ +u+) ε+τ+ + (∂ +u−) ε+τ− + (∂−u+) ε−τ+ + (∂−u+) ε−τ−

(1.4)
for when, in addition to time translation symmetry, one also has rota-
tional symmetry (See chapter 2 for all these idempotents). Suffice to
rewrite this equation as

∂u = [(∂ +u+) τ++(∂ +u−)τ−] ε++ [(∂−u+) τ++ (∂−u+)τ−]ε− (1.5)

and then as

∂u = ∂(+u+ τ+ + +u−τ−) ε+ + ∂(−u+ τ+ + −u+τ−)ε− (1.6)

τ± has to do with issues that come under the name of handedness,
chirality and helicity, intrinsically associated with spin. This will be
understood when, in the next chapter, we deal with angular momentum.

For a system where the rest mass of the electron were the dominant
energy, it makes practical sense to write E as m+∆E. This is well known
from standard relativistic quantum mechanics. In the Kähler calculus,
the dominant energy representation of electron systems is given us

u = e−imtR(t, x, dx)ε−, (1.7)

where R(t, x, dx) depends the more slowly on time the more close to each
other m and E are. Compare with (1.2). This expression for solutions
will be very much used in the following.

1.2 Kähler equations for stationary solutions

Let u be any element of the Kähler algebra (again, of scalar-valued
differential forms). Any equation of the form

∂u = au (1.8)

will be referred to as a Kähler equation. A particular case is ∂u =
0. In Euclidean space of dimension 2 we get even differential forms,
already considered in the two previous chapters. In dimension 3, Kähler
derived a magnificent theory of harmonic differentials without resort to
separation of variables. That is very interesting but momentarily, it is
not as important as the equation (1.8) in spacetime, with a different
from zero and the algebra being over the complex field. We shall also
make c = 1.

(∂±u)ε± = a (±u ε±). (1.9)
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Solutions ±u ε± may correspond to particle states of undefined chirality.
From the perspective of the number of components in the solutions

and what they represent, neither Eq. (1.8) nor Eqs. (1.9) have a close
analog in the Dirac equation. To start with, they do not have the same
number of components. The electron and positrons of both chiralities
are directly associated with the equations

(∂ ±u∗)ε±τ ∗ = a (±u∗ ε±τ ∗). (1.10)

The parentheses have been put there simply to emphasize that the dif-
ferentiation of ε±τ ∗ can be ignored since it yields zero. The asterisk
means that correlation between the superscripts of ε and τ is not im-
plied. The ε± would be for pairs of particle and antiparticle, and the
τ± would be for the two opposite handedness in each of those two cases.
Phase factors are inside the ±u∗ when solutions proportional to ±u∗ ε±τ ∗

represent specific particle states.
By writing a as α+ iβdt and replacing ±u with e−iEtp±, the develop-

ment of Eqs. (1.9) by Kähler yields the following equations for stationary
solutions

∂p± (E + β)ηp − αp = 0, (1.11)

where the signs ± corresponds to p± respectively. This is obtained with-
out resort to dominant energies or specific couplings. Kähler used this
equation just for the fine structure of the hydrogen atom, for which it
takes a very simple form. We shall later see another important applica-
tion.

1.3 Kähler equations for Dirac spinors

We may be interested in what we shall denote as Dirac spinors that are
proper “functions” for given energy and chirality. Kähler wrote such
spinor solutions as

u = eisφ−iEtpτ±ε∗, (1.12)

where p depends only on ρ, z, dρ and dz, and where s and E are the
angular momentum and energy of the system. We shall replace the
symbol ∨ for juxtaposition when we judge that it makes equations more
transparent.

Differentiating (1.12), we get

∂u = eisφ−iEt(isdφ ∨ p− iEdt ∨ p+ ∂p)τ±ε∗. (1.13)

We then use
dφ ∨ p = dφ ∧ p = ηp ∧ dφ = ηp ∨ dφ, (1.14)

and
dt ∨ p = dt ∧ p = ηp ∧ dt = ηp ∨ dt. (1.15)
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Thus,

∂u = eisφ−iEt(is ∨ ηp ∨ dφ− iEηp ∨ dt+ ∂p)τ±ε∗. (1.16)

We now use that

τ− − τ+ = −idxdy = −iρdρdφ (1.17)

to obtain dφ and then

dφ ∨ τ± = −idρ
ρ

(τ− − τ+)τ± = −idρ
ρ
τ±. (1.18)

Equation (1.18) together with idtε± = ∓ε± allows us to finally write
(1.16) as

∂u = eisφ−iEt(∂p± sηpdρ
ρ
− ∗Eηp)τ±ε∗, (1.19)

which could be used on the left hand side of Kähler equations, specially if
we do not want to resort to dominant energies in reducing the simplicity
of some Kähler equations.

2 Dominant energy and electromagnetic coupling

In the first subsection of this section as well as everything that went
above is original work of Kähler. If you do not like it, go to church and
talk to him. From now on, I take the blame for what follows. I say that
because some learned people will retort that this is not in the spirit of
modern physics and mathematics, or they will say even something worse.
I do not care. The mathematical and physics community should at least
know what Kähler did. He wrote in German. I am doing it in English
and in a slightly more Cartanian way. One has to understand geometry
à la Cartan in order to really appreciate the Kähler’s calculus and even
go beyond it. With my book ”Differential geometry for physicists and
mathematicians” I tried to do with some of Cartan’s work what I am
now trying to do with some of Kähler’s work.

2.1 Charge

With electromagnetic coupling, the Kähler equation reads

∂u = (−m+ ieA)u, (2.1)

where m is the rest mass, and e (positive or negative) represents the
charge of positrons and electrons. In going from (1.8) to (2.1), there are
unstated or undefined assumptions. We are trying to say that, whereas
(1.8) does not assume a situation where particles and antiparticles are of
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the essence, (2.1) does, even though this is not explicit. It is contained
in the mere presence of a mass competing with an electromagnetic field.
For the split (1.1),we have

(∂±u) ε± = (−m+ ieA) ±u ε±. (2.2)

Let us now deal with the announced existence of what, in the elec-
tromagnetic case, becomes charge of opposite signs. We shall reproduce
in chapter 6 the derivation of the conservation equation of this calculus
and its specialization to when u is written as (1.1). After the appro-
priate natural interpretations, the conservation law takes a form which
translated to the language of the vector calculus reads like this(

∂ρ+
∂t

+ div j+

)
+

(
∂ρ−
∂t

+ div j−

)
= 0, (2.3)

where ρ+ and j+ are determined only by +u and its complex conjugate,
and similarly for ρ−, j+ and j−. Hence the two options in ε± should be
assigned to positrons and electrons. Probability densities should in turn
be assigned directly to charge and indirectly to particles, but certainly
not yet at this point.

We shall not go until chapter 6 into the rather laborious derivation
of how ρ± and j± depend on ±u. Equation (2.3) implies the apparent
existence of two types of charge, and that only total charge (understood
as their sum) and not each individual one is conserved when both are
present. Their individual conservation is an afterthought when the two
types stay apart, like a nucleus and its surrounding cloud of electrons.

In obtaining (2.3), Kähler does not make full use of the Kähler equa-
tion with electromagnetic coupling, but simply that a for that coupling
has a specific property, which can also be satisfied in principle by other
ones. And even if that property were not satisfied, we might still get
conservation equations with the flavor of (2.3), but where the ρ’s and
j’s would depend on the ±u’s in a different way. Results like this do not
make part of the books on the Dirac theory from which I, and probably
you, learned.

The equations we derived in the previous section can easily be adapted
to the electromagnetic coupling. We are about to see that the equations
for positrons and electrons have nothing to do with small and large
components of the solutions of one equation, solutions misinterpreted in
the Foldy-Wouthuysen treatment of Dirac’s theory as respectively repre-
senting positron and electron amplitudes. Large and small components
belong equally to solutions for particles and antiparticles. These two are
in the same footing at this level of theory.
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2.2 The Pauli equation

Of practical interest is the case when the rest energy m of the electron
is the dominant energy. We use (1.7) in (2.1) for an electron in a state
of undefined handedness in an electromagnetic field. Given that ∂u is
dt u,t + dxi u,i, we get, after some simplification,[

dt(−imR +R,t ) + dxiR,i
]
ε− = (−m− ieΦdt+ ieAidx

i)Rε−. (2.4)

Premultiplying by −dt, using that (dt)2 is −1 and leaving R,t ε
− as the

sole term on the left, we get

R,t ε
− =

[
−dxidtR,i +(−ieAidxidt+ im+mdt− ieΦ)R

]
dtε− (2.5)

We cannot simplify ε− until we absorb all dt factors into ε−, which we
do by means of dtε− = −iε− (Check what would happen and compare
with what we are about to get). We thus obtain

R,t = −PηR− ieΦ + im(R− ηR), (2.6)

where we have replaced dxj(−i∂j−eAj) with the symbol P and where we
have used that R does not contain dt as a factor. Recall from previous
chapters that η changes the sign of terms of odd grade. We apply η to
(2.6). Combining the resulting equation with (2.6) itself, we get

ϕ,t = Pχ− ieΦϕ, (2.7)

χ,t = −Pϕ− ieΦχ+ 2imχ, (2.8)

where

ϕ =
1

2
(R + ηR), χ =

1

2
(R− ηR). (2.9)

We now proceed following a step to be found in the standard literature.
Among the books on relativistic or advanced quantum mechanics that
we have come across, there is one which deserves special attention be-
cause of the topics it deals with, namely the aforementioned “Relativistic
Quantum Mechanics” by J. D. Bjorken and S. D. Drell”. This book is
particularly interesting not only because of the institutional affiliation of
its authors and the contributions they made to the high energy physics
of their time, but also because of the year in which their work was pub-
lished, 1963. That was the time when high energy physics was becoming
corporate physics, meaning that advances were produced as if they were
products of a corporation, one of the main headquarters being Stanford’s
linear accelerator. It was also the time when problems in the very foun-
dations of quantum mechanics were addressed rather than swept under
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the rug, as, more often than not happens nowadays. This is why there
was a chapter on hole theory in their book. We have mentioned all this
because we are about to take a step right now which is conceptually the
very same step as one of those that they took in their first chapter. In
the paragraph just before the last, they had connected with the Pauli
equation. They then opened the last paragraph of the chapter as fol-
lows: “Fortified by this successful non-relativistic reduction of the Dirac
equation, we go on ...”

The title of their chapter 4 is “The Foldy-Wouthuysen transforma-
tion”. And chapter five’s title is “Hole theory”, designed to deal with the
issue of negative energy solutions of Dirac’s theory. These solutions are
a consequence of what is spurious in Dirac’s theory. The association of
antiparticles with negative energy solutions does not emerge when doing
relativistic quantum mechanics with Kähler’s mathematics.

In the process of deriving the Pauli equation, Bjorken and S. D.
Drell took a step which is totally equivalent to the one that we are
about to take with our equation (2.8). Of their equation that parallels
this equation (2.8), they said that “it may be approximated for kinetic
energies and field interaction energies small in comparison with mc2, ...”.
We return to this further below, where we shall see that this amounts to
neglecting terms χ,t and −ieΦχ in our equation (2.8). The assumption
χ,t is unwarranted, since χ,t may be huge and can thus not be ignored
even if χ,t were small. This will have a very important consequence that
is worth mentioning with a view to trying to understand at least some
obscure point in the Dirac theory, as we shall explain further below. Let
us assume that we ignore this difficulty and proceed in parallel to what
they did. If the said approximation were correct, we would have

χ1 = − i

2m
Pϕ, iϕ′,t = iPPϕ+ iΦϕ. (2.10)

Let us assume that we knew ϕ. We would then approximately know χ.
We refer to this approximated χ as χ1. With χ replaced with χ1, the
right equation (2.7) gives only an approximate ϕ,t even if we knew the
right ϕ and left it on the right. This is the reason why we have used
ϕ′ on the left and ϕ on the right. This remark will be useful for the
approximation in the next section

We expand PPϕ and use that

PkPjϕ = −i∂k(ieAj) = ieAj,k . (2.11)

We then perform some manipulations given in more detail in our “The
Foundations of Quantum Mechanics and the Evolution of the Cartan-
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Kaehler Calculus” (Foundations of Physics 38, 610-647 (2008)), and get

i
∂

∂t
ϕ′ =

1

2m
P 2ϕ+

ie

2m
Bkdx

idxjϕ+ eΦϕ, (2.12)

where the summation is over the three cyclic permutations of (1, 2, 3).
This is the Pauli equation in terms of differential forms, except that
Pauli’s ϕ on the right hand side also is ϕ′. At this stage and for the
present purpose, “this difference does not make a difference”.

One should not overlook that this equation is for ϕ, not for R, here as
in the corresponding formula in the Dirac theory. In spite of the objec-
tion raised about (2.10), equation (2.12) is of great interest,. though not
for the same reason as in the paradigm, where it was welcome because it
gave confidence in the Dirac equation to construct a relativistic theory
of the electron. For us, it will be important for another reason, which
we shall discuss at length later on.

2.3 The Foldy-Wouthuysen Hamiltonian

In the literature, one uses the term Foldy-Wouthuysen transformation
more often than Foldy-Wouthuysen transformation. But its main pur-
pose is the transformation of the Hamiltonian, which Bjorken and Drell
perform in the every same section. In fact, they do not even speak of the
transformed wave function on which the new Hamiltonian acts, though
this is obvious by gauge invariance considerations.

We continue the process by which (2.12) was obtained. We write the
sought χ as the old one, χ1, plus some χ′1,

χ = − i

2m
Pϕ+ χ′1. (2.13)

This together with (2.8) yields

χ,t = −ieΦχ+ 2imχ′1. (2.14)

Hence, solving for χ′, we have

χ′1 =
i

2m
χ,t +

eΦ

2m
χ. (2.15)

From (2.7), we get that χ′1 adds the terms iPχ′1, i.e.

iPχ′1 =
−1

2m
Pχ,t +i

eΦ

2m
Pχ. (2.16)

It is only at this point that we replace χ with χ1 on the right hand side
of (2.16). The computations are straightforward but rather laborious.
One obtains

iPχ′1 =
−1

8m3
p4ϕ− i e

4m2
PECϕ− e

4m2
Ei , jdx

j ∧ dxiϕ, (2.17)
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where we have eliminated higher order terms for comparison purposes
with how this would be written in the paradigm. The small p is −idxj∂j,
and E is here notation for dxjEj. The superscript is used to indicate
that E in PECϕ is treated as if it were a constant in this term. The
parenthesis around dxj ∧ dxi is meant to say that we add over cyclic
permutations in 1kdxi ∧ dxj.We thus further get

− ie

4m2
PECϕ = − e

4m2
dxidxjEj∂iϕ, (2.18)

which corresponds to the σ · (E× p) term in the standard version of rel-
ativistic quantum mechanics, i.e. with vector-valued quantities. Please
be informed that we had an inadvertent replacement of a “∨” product
with a “∧” product. That in turn gave rise to a spurious term, which is
the reason for a discrepancy with (2.18).

The last term in (2.17) yields

− e

4m2
Ei , jdx

j ∨ dxiϕ =
e

4m2
Ei,i ϕ−

e

8m2
Ej ,idx

j ∧ dxiϕ, (2.19)

equivalently, the divE and σ · curlE terms with appropriate factors. In
all terms on the right of the i ∂

∂t
ϕ′ post-Pauli equation, all operators are

acting on ϕ the original wave differential form ϕ.
Let us look at what we have got. We have developed to order 1/m3

the Kähler equation with electromagnetic coupling and mass as domi-
nant energy term for the even grade part of solutions whose odd grade
part satisfies χ,t� −P ∨ ϕ. The development was directed towards let-
ting i ∂

∂t
ϕ alone on the left hand side. Hence, the right hand side defines

a Hamiltonian, namely

H =
1

2m
P 2 +

ie

2m
Bkdx

idxj + eΦ− 1

8m3
p4 − e

4m2
dxidxjEj∂i

+
e

4m2
Ei,i−

e

8m2
Ej ,idx

jdxi, (2.20)

acting on the original wave function, whereas the energy operator, i∂/∂t
is acting on a slightly different wave function, i.e.

i
∂

∂t
ϕ′ = Hϕ. (2.21)

Of course, we could think of ϕ′ as a ϕ, and vice versa, thus i ∂
∂t
λ = Hλ′,

where we have used λ′s instead of ϕ’s in case it would create confusion.
Observe how, by virtue of the little bit of Kähler equations that we

have learned, we have reached deep into relativistic quantum mechanics,
to a depth even greater than most advanced books on quantum mechan-
ics.
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2.4 Leftovers

TO BE COMPLETED. This subsection would deal with subjects that
we left over because of the pressure for this author to write about other
jewels of this calculus and concomitant quantum mechanics.

Readers can now do exactly the same for positrons. One only has to
repeat with

u = e−imtR(t, x, dx)ε+, (2.22)

what we did with e−imtR(t, x, dx)ε−. You will find a system just like
(2.7)-(2.8), except that the even, ϕ̄, and odd, χ̄, parts of u will satisfy
the equations satisfied by χ and ϕ. Thus ϕ̄ will be small and χ̄ will be
large under similar assumptions. But notice that both χ and ϕ belong
to the electron and both ϕ̄ and χ̄ belong to the positron. Whether we
have one particle or another depends only on whether we are dealing
with ε+ or ε−.

Another topic that will be treated in this subsection is the explana-
tion from the Kähler theory of why the mass of the positron emerges as
−m. In this and following chapters, I shall provide you with entries into
the world of Kähler, exploring areas that nobody has jet explored.

3 An entry point for research on relativistic quan-
tum mechanics with the Kähler calculus

What follows might be felt as being derogatory on Dirac, whom many
will rightly consider the second best physicist of the twentieth century.
His equation presently is more relevant for theoretical physics than Ein-
stein equations. Dirac did his work when the math was not ready for
the task. So, thanks are due to Dirac. But now is now and the math-
ematics allows for a better job. We proceed to describe the situation
with respect to post-Pauli-Dirac electromagnetic Hamiltonians. For the
discussion that will follow, we write the Dirac equation with explicit
universal constants

i~
∂ψ

∂t
=
[
cα·
(
p− e

c
A
)

+ βmc2 + eΦ
]
ψ, (3.1)

where α and β represent well known matrices in relativistic quantum
mechanics. Clearly, a development in powers of 1/m, which is what
Bjorken and Drell did, is not equivalent to a development in powers of
1/c. The reason to make this remark will be seen later below.
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3.1 Post-Pauli-Dirac and Foldy-Wouthuysen equa-
tions

The term Foldy-Wouthuysen Hamiltonian is not used in the literature.
One uses instead the term Foldy-Wouthuysen to refer to transformations
through which one reaches the Hamiltonian:

H = β

(
m+

(p− eA)2

2m
− p4

8m3

)
+ eΦ − e 1

2m
βσ ·B

− ie

8m2
σ· curl E − e

4m2
σ(E× p) − e

8m2
divE, (3.2)

where p has components pi, where Φ and A are components of the
4-vector potential and where σ has as components the three Pauli ma-
trices. Equation (3.2) results in the approximation (kinetic energy/m)3

and (kinetic energy)(field energy)/m2. The Hamiltonian (3.2) is the tan-
gent vector field equivalent of (2.20), except for the absence of the mass
term in the latter and for a factor of two in the divergence of E term.
The three terms in the parenthesis in (3.2) and the five terms outside it
add to eight. Terms 1, 2, 3, 4, 5,6 and 7 of (2.20) correspond to terms
2, 5, 4, 3, 7, 8 and 6 of (3.2). The reason for the absence of the m term
has already being explained. What is surprising tis that all the other
terms are the same except for the factor of two to which we have just
made reference

We follow the presentation by Bjorken and Drell. This is a Hamilto-
nian that displays the different interaction terms between the electron
and an applied field in an easily interpretable form. They do not give the
form of the equation or on what “function” (actually a two component
spinor) this operator is acting upon. We shall see further below why this
remark is important.

They apply a unitary transformation three times. The purpose in
doing so is to remove all from the equation all operators such as α
which couple the large to the small components. It is implicit in this
that the equation where (3.2) would be the Hamiltonian is an equation
for the positive energy state. More on this below. They describe a
Foldy-Wouthuysen transformation as “a canonical transformation which
decouples the Dirac equation into two two-component equations; one
reduces to the Pauli description in the nonrelativistic limit; the other
describes the negative energy states.”

In speaking of negative energies, they state that they “and four-
component wave functions are the price we must pay in order to have
a factorization of H ′ in (4.1) into a linear Dirac equation.” H ′ is the
operator

H ′ = β
√
m2 + p2. (3.3)
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It is worth noticing that the Kähler equation was born linear, and that
negative energy solutions need not accompany the positive ones. There
is not an ab initio need to separate them if we start with a spinor in the
right ideal, and small components, when dealing with the electron, do
not then belong to the positron.

We now cite on the Foldy-Wouthuysen transformation from the book
“Relativistic Quantum Mechanics and Introduction to Field Theory” by
F. J. Yndurain. Let us start with “... of the four solutions of the Dirac
equation (with or without a potential) only two are physical”. Make
what you want of such a statement. You would find in every book on
the subject some statement who makes you raise your eyebrows, though
any such statement does not raise the same eyebrows.

Yndurain performs two Foldy-Wouthuysen transformations on “the
Dirac for a particle in a potential, the sum of a Minkowski vector (A,
A0), a Minkowski fourth component, V0, and a scalar one, βVS :

H = mc2β + V + VSβ + cα·
(
P− e

c
A
)

; (3.4)

we have here defined V ≡ A0 + V0”. Here P is the usual p. His result
for “the Foldy-Wouthuysen Hamiltonian” is

HFW = mc2β + V + VSβ + β
(P− eA)2

2m
− e 1

2m
βσ ·B− β P4

8m3c2

− 1

8mc2
[αP, [αP,V ]]− 1

8mc2
β {αP,{αP,Vs}} . (3.5)

The author has performed two Foldy-Wouthuysen transformations. Act-
ing on operators (call them h) to the left of the spinor, each Foldy-
Wouthuysen transformation yields take eThe−T . Under the two trans-
formations, the positive energy solutions of the Dirac equation are rep-
resented by wave functions

ψFW = eT
′
eTψ +O(c−3). (3.6)

(O(c−3) as in the original). We were interested in this comment, which
certainly we are not criticizing. He is certainly treating Foldy-Wouthuysen
transformations as gauge transformations. Hψ will go into

(eT
′
eTHe−T e−T

′
)(eT

′
eTψ) = eT

′
eTHψ. (3.7)

Hence, the Dirac equation written as i~∂ψ/∂t = Hψ goes to

HFWψFW = i~eT ′
eT
∂ψ

∂t
= i~

∂ψFW
∂t

. (3.8)
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Let us finally consider one more approach to the Hamiltonian in a
post-Pauli approximation. In the first part of their volume (IV) on Rela-
tivistic Quantum mechanics, Landau and Lifchitz reportedly reproduce
the treatment of A. Akhieser an V. Berestetski to reach the next ap-
proximation in the development of (3.1), They say that they assume
that there is only an electric field. They set A = 0 and obtain

H =
p2

2m
+ eΦ− p4

8m3
− e

4m2
σ · (E× p)− e

8m2
divE. (3.9)

Again, the method followed causes the absence of the m term. The
absence of the m term, as was the case with (2.20) has to do with the fact
that they intended to obtain the next approximation for a Schrödinger
type equation.

Also absent in (3.9) are the terms 5 and 6 of (3.2). The absence of
term 5 is not surprising given that they have assumed A = 0. But the
absence of term 6 might be attributed to the fact that making A = 0
makes the electric field incomplete. There is no discrepancy between the
divE term in (3.2) and (3.9). We do not know where the discrepancy by
a factor of two with a similar term in (2.20) is born.

3.2 Research suggestions for involvement with the
Kähler calculus

Without the need for further comparisons, it is fair to say that these
developments of the Dirac equation are not very transparent. Our de-
velopment of the Kähler equation is, but it remains without explanation
why we should be satisfied with an equation for ϕ rather than an equa-
tion for u. It would be desirable to approach the problem without the
early separation of the equation for u into ϕ and χ I suggest readers
have here an entry point for research on relativistic quantum mechan-
ics with the Kähler calculus. I suggest the following two problems. I
have not even started to do what I am suggesting for fear of getting
too involved with them at a “time when I do not have time”. So, I do
not know whether one gets something of interest and/or easy to handle.
Much will depend on the ability of those who may try.

Research problem. Since the β of equation (1.11) is a 0−form,
we can solve for ηp. This can be replaced in the equation obtained by
applying η to (1.11). At this point, it will be useful to see what this
equation says after replacing α the β for electromagnetic coupling read
from (2.10). It seems clear that this will not be directly comparable to
(2.20), (3.2) and (3.3) since it will involve the potential rather than the
electric and magnetic fields. One can then proceed with different types
of approximations only limited by your imagination.
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Research problem. One can then try to follow the same process
now with (1.19), where the chirality or handedness of the state differen-
tial form is defined.

4 Breakthrough energy, Kähler calculus and Schwinger’s
source theory

Dirac’s theory carries a baggage that Kähler’s does not. The former
has been loaded since birth with the concept of spinor as fundamental,
rather than emergent (Notice that u does not even represent a particle in
Eq. (1.8), and a need not contain the mass). We want to extract clean
energy from wherever. matter holds the greatest density of energy. But,
at the nuclear level, energy is not sufficiently well understood. What we
have seen in previous sections should be enough to make the point that
Kähler’s theory holds promise in this regard because it is more powerful,
more structured and more comprehensive. Its connection with nuclear
physics may be in source theory.

4.1 Schwinger’s source theory

The modern expansion of Dirac’s theory, with concepts like spin connec-
tion, comes at a stiff price and does not even have the right generality. In
the first of the already posted chapters, one sees that the Kähler deriva-
tive of vector-valued differential forms also depends on the connection
on the manifold. Unlike the spinor connection, it will not generally in-
volve Christoffel symbols, either directly or exclusively, unless the affine
connection of the manifold is the Levi-Civita connection. To make mat-
ters worse, dealing with the generalization of the Dirac operator requires
years of specialization by those who eventually work with it. And what
has been achieved with it?

As in Dirac’s, the concept of mass is not yet emergent in Kähler’s
theory, but the concept of mechanical and generalized momentum is.
Concepts like Foldy-Wouthuysen transformations are unnecessary and
cloud the issues. Also in the Kähler calculus, the treatment of the en-
ergy operator (we leave the imaginary unit factor for the last day of
the summer school) and of Hamiltonians is just a matter of comput-
ing with differential equations without resort to operator theory. And
most significant is the fact that Kähler’s treatment of angular momen-
tum is just a matter of Killing symmetry and properly handling sums of
partial derivatives, rather than replacing operators for classical particle
magnitudes. Our treatment of relativistic quantum mechanics without
operator theory should have made plausible the idea that cutting edge
quantum physics need not be quantum field theory, which is operator

62



based. Nor is the by now forgotten S-matrix theory a suitable alter-
native. We anticipate that a third option, Schwinger’s source theory,
constitutes a proxy for what the Kähler calculus will become when used
to address the same issues. But it has received far less attention than it
deserves.

Source theory is difficult to define. Its major attractiveness is that
“the results of quantum electrodynamics are reproduced without the
irrelevance of divergences, or renormalizations”. It has spacetime em-
phasis like quantum field theory, but it differs from it in that it is not
operator based. Like S-matrix theory, it also has phenomenological em-
phasis, which we do not view with enthusiasm. But the phenomenology
might look less so when approached with the more formal perspective
that the Kähler calculus provides.

Schwinger points out that “... in general, particles must be created
in order to study them, since most of them are unstable. In a general
sense this is also true of high-energy stable particles, which must be cre-
ated in that situation by some device, i.e. an accelerator. One can regard
all such creation acts as collisions, in which the necessary properties are
transferred from other particles to the one of interest... The other par-
ticles in the collision appear only to supply these attributes. They are,
in an abstract sense, the source of the particle in question... We try
to represent this abstraction of realistic processes numerically...”.And
further down, he writes: “Unstable particles eventually decay and the
decay process is a detection device. More generally, any detection de-
vice can be regarded as removing or annihilating the particle. Thus
the source concept can again be used as an abstraction ... with the
source acting negatively, as a sink.” Bold face has been added.

At a much simpler level, consider the wealth of results we obtained
from writing down ∂u = au, which is like y′ = f(x)y but for a calculus
based on Clifford algebra. The formalism leading to it did was not
based on physical considerations except for geometry of the spacetime
manifold. The Kähler equation does not have physical history. Certainly
it borrows from history, but it is one in which it did not take part. It
thus acquires physical ascendancy only when we claim that it represents
reality. If it could talk, it would advertise itself as follows “If I am given
the sum of a constant scalar and a scalar-valued differential 1−form, I
return to you these solutions ...”. It does not have its roots in classical
physics, which usually takes place through operators.

4.2 Breakthrough energy

The types of Hamiltonians used in nuclear reactions appear not to be
clean cut. A translation into a Kähler calculus description of source
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theory might could go a long way towards enrichment of the former,
and towards a systematic and clean study of Hamiltonians for nuclear
reactions. So far, this young but languishing calculus has not yet reached
the necessary degree of development.

A case in point of this fussiness is precisely the reaction of deuterium
with hydrogen to yield 3He plus heat in a hydrolysis process that uses as
cathode a palladium lattice (see next paragraph). After Schwinger ar-
gued that the interaction with phonons in the palladium lattice enhanced
the p-d fusion rate, O. H. Crawford counterargued that this mechanism
does not enhance it (Fusion Technology, Vol 21, March 1992, pp 161-
162). This is a beautiful example of a controversy about Hamiltonians
for nuclear reactions that, by its very nature, an extended Kähler calcu-
lus might help resolve. The core issue is if and how the palladium lattice
can diminish the width of the Coulomb barrier so that the reaction could
take place in significant amounts. It is precisely in connection with such
controversies that an extended Kähler calculus could play a crucial role.

Let us focus on the experimental evidence. Silver, Dash and Keefe
(Fusion Technology, Vol 24, Dec. 1993, pp 423-430) examined “with
the scanning electron microscope, scanning tunnelling microscope, and
atomic force microscope” unusual surface characteristics of an electrolyzed
palladium cathode but not on palladium that had not been electrolyzed.
More specifically, the unusual features happened when the electrolyte
contained hydrogen and deuterium atoms, but not, for instance, when
it was constituted by heavy water and sulfuric acid.

There is another important point, which I serendipitously learned
about. In the mid to late eighties, physicist Edbertho Leal-Quiros was
doing experimental plasma physics with a machine that he himself had
helped build as Ph. D. student in the group of Professor M. Prelas at
the University of Missouri in Columbia, and that he used for his doctoral
thesis. He was creative at building gadgets to measure properties of plas-
mas given the experience he had acquired at doing so while obtaining his
master’s degree at the National University of Colombia in Bogota under
a German program to help develop physics in that country. He once
proudly told me that at some point he was able to measure more plasma
parameters than anybody else, and that he had put that knowledge to
work when helping build that machine.

Years later, when the program in Columbia was terminated, its uni-
versity donated the machine to the Metropolitan University of Puerto
Rico, where Leal had become a professor. Many years ago he told me
that while working with this machine, he used to find from time to time
a gamma ray of about the expected energy of about the 5.5 MeVs to be
expected if such a reaction took place. Leal, who now holds with his son
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David at least a patent on the production of the rare and expensive el-
ement 3He, did not have a lattice. He rather had an erratic high energy
photon, but not an explanation of where it came from. Since he was
working with plasmas, it should not be surprising that the formidable
Coulomb barrier might have been jumped from time to time. More re-
cently, they claim to have produced 3He yielding phonons on a crystal,
as predicted by Schwinger, but not in palladium crystal.

Finally, there is a very intimate relation between Einstein’s failed
attempt at unification with teleparallelism —this need not have been so
much of a failure— and the Kähler calculus. Hint: Finslerian connec-
tions on pseudo-Riemannian metrics show preference for Kähler’s over
Dirac’s theory by virtue of where the two indices of the electromagnetic
field fit in geometric quantites of interest in tangent bundle related ge-
ometrization of the physics. The last ideas by Einstein, Schwinger and
Kähler may have been their best. They were ignored without regard for
their merit. One cannot appreciate what one does not care to under-
stand!
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