
CHAPTER 5: Lie Differentiation
and Angular Momentum

Jose G. Vargas

1 Lie differentiation

Kähler’s theory of angular momentum is a specialization of his approach
to Lie differentiation. We could deal with the former directly, but we
do not want to miss this opportunity to show you both, as they are
jewels. As an exercise, readers can at each step specialize the Lie theory
to rotations.

1.1 Of Lie differentiation and angular momentum

For rotations around the z axis, we have

∂

∂φ
= x

∂

∂y
− y ∂

∂x
. (1.1)

The partial derivative equals an example of what Kähler defines as a Lie
operator, i.e.

X = αi(x1, x2, ...xn)
∂

∂xi
, (1.2)

without explicitly resorting to vector fields and their flows (See section
16 of his 1962 paper). Incidentally, ∂/∂xi does not respond to the con-
cept of vector field in Cartan and Kähler (For more on these concepts,
see section 8.1 of my book “Differential Geometry for Physicists and
Mathematicians”). Contrary to what one may read in the literature,
not all concepts of vector field are equivalent, but simply related (See
section 3.5 of that book).

One would like to make (1.2) into a partial derivative. When I had
already written most of this section, I realized that it was not good
enough to refer readers to Kähler’s 1960 paper in order to know how
to do that; until one gets hold of that paper (in German, by the way),
many readers would not be able to understand this section. So, we have
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added the present subsection 1.8 to effect such a change into a partial
derivative.

Following Kähler, we write the operator (1.1) as χ3 since we may
extend the concept to any plane. We shall later use

χk = xi
∂

∂xj
− xj ∂

∂xi
, (1.3)

where (i, j, k) constitutes any of the three cyclic permutations of (1, 2, 3),
including the unity. Here, the coordinates are Cartesian.

Starting with chapter 2 posted in this web site (the first one to be
taught in the Kähler calculus phases (II and III) of the summer school),
we have not used tangent-valued differential forms, not even tangent
vector fields. Let us be more precise. We will encounter expressions
that can be viewed as components of vector-valued differential 1−forms
because of the way they transform when changing bases. But those com-
ponents are extractions from formulas arising in manipulations, without
the need to introduce invariant objects of which those expressions may
be viewed as components. The not resorting to tangent-valued quanti-
ties will remain the case in this chapter, even when dealing with total
angular momentum; the three components will be brought together into
just one element of the algebra of scalar-valued differential forms.

1.2 Lie operators as partial derivatives

Cartan and Kähler defined Lie operators by (1.2) (in arbitrary coordi-
nate systems!) and applied them to differential forms. A subreptitious
difficulty with this operator is that the partial derivatives take place un-
der different conditions as to what is maintained constant for each of
them. This has consequences when applied to differential forms.

In subsection 1.8, we reproduce Kähler’s derivation of the Lie deriva-
tive as a single partial derivative with respect to a coordinate yn from
other coordinate systems,

X = αi(x)
∂

∂xi
=

∂

∂yn
. (1.4)

His proof of (1.4) makes it obvious why he chose the notation yn

Let u be a differential form of grade p,

u =
1

p!
ai1...ipdx

i1 ∧ ... ∧ dxip , (1.5)

in arbitrary coordinate systems. Exceptionally, summation does not
take place over a basis of differential p−forms, but over all values of the
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indices. This notation is momentarily used to help readers connect with
formulas in in Kähler’s 1960 paper.

Our starting point will be

Xai1...ip = αi(x)
∂ai1...ip
∂xi

=
∂ai1...ip
∂yn

. (1.6)

1.3 Non-invariant form of Lie differentiation

In subsection 1.8, we derive

Xu =
1

p!
αi
∂ai1...ip
∂xi

dxi1 ∧ ... ∧ dxip + dαi ∧ eiu, (1.7)

with the operator ei as in previous chapters.
Assume that the αi’s were constants. The last term would drop out.

Hence, for Xi given by ∂/∂xi and for u given by ai1...ipdx
i1 ∧ ... ∧ dxip ,

we have

Xi(ai1...ipdx
i1 ∧ ... ∧ dxip) =

∂(ai1...ipdx
i1 ∧ ... ∧ dxip)

∂xi
=
∂ai1...ip
∂xi

dxi1...ip ,

(1.8)
where dxi1...ip stands for dxi1 ∧ ... ∧ dxip . This allows us to rewrite (1.7)
as

Xu =
1

p!
αi
[
∂(ai1...ipdx

i1...ip)

∂xi

]
+ dαi ∧ eiu, (1.9)

It is then clear that

Xu = αi
∂u

∂xi
+ dαi ∧ eiu, (1.10)

In 1962, Kähler used (1.10) as starting point for a comprehensive treat-
ment of lie differentiation.

The first term on the right of (1.10) may look as sufficient to represent
the action of X on u, and then be overlooked in actual computations.
In subsection 1.8, we show that this is not so. We now focus on the first
term since it is the one with which one can become confused in actual
practice with Lie derivatives.

Notice again that, if the αi’s are constants —and the constants
(0, 0, ..1, 0, ...0) in particular— the last term in all these equations van-
ishes. So, we have

X(cu) = c
∂u

∂xi
, (1.11)

for a equal to a constant c. But

X [a(x)u] = a(x)
∂u

∂xi
(Wrong!)
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is wrong. When in doubt with special cases of Lie differentiations, resort
to (1.10).

The terms on the right of equations (1.7) to (1.10) are not invariant
under changes of bases. So, if u were the state differential form for a
particle, none of these terms could be considered as properties of the
particle, say its orbital and spin angular momenta.

1.4 Invariant form of Lie differentiation

Kähler subtracted αiω k
i ∧ eku from the first term in (1.10) and simul-

taneously added it to the second term. Thus he obtained

Xu = αidiu+ (dα)i ∧ eiu, (1.12)

since

αi
∂u

∂xi
− αiω k

i ∧ eku = αidiu, (1.13)

and where we have defined (dα)i as

(dα)i ≡ dαi + αiω k
i . (1.14)

One may view dαi + αkω i
k as the contravariant components of what

Cartan and Kähler call the exterior derivative of a vector field of com-
ponents αi. By “components as vector”, we mean those quantities which
contracted with the elements of a field of vector bases yield the said ex-
terior derivative. Both differential-form-valued vector field and vector-
field-valued differential 1−form are legitimate terms for a quantity of
that type. The corresponding covariant components are

(dα)i = dαi − αhω h
i . (1.15)

If you do not find (1.15) in the sources from which you learn differential
geometry, and much more so if your knowledge of this subject is con-
fined to the tensor calculus, please refer again to my book “Differential
Geometry for Physicists and Mathematicians”. Of course, if you do not
need to know things in such a depth, just believe the step from (1.14)
to (1.15). We are using Kähler’s notation, or staying very close to it.
Nevertheless, there is a more Cartanian way of dealing with the contents
of this and the next subsections. See subsection 1.7.

In view of the considerations made in the previous sections, we fur-
ther have

Xu = αidiu+ (dα)i ∧ eiu (1.16)

All three terms in (1.12) and (1.16) are invariant under coordinate trans-
formations. The two terms on the right do not mix when performing a
change of basis. This was not the case with the two terms on the right
of (1.7) and (1.10), even though their form might induce one to believe
otherwise.
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1.5 Action of a Lie operator on the metric’s coeffi-
cients

Following Kähler we introduce the differential 1−form α with compo-
nents αi, i.e.

α = αkdx
k = gikα

idxk. (1.17)

If the αi were components of a vector field, the αk would be its covariant
components. But both of them are here components of the differential
form α. We define diαk by

(dα)i = (diαk)dx
k. (1.18)

Hence, on account of (1.15),

diαk ≡ αi,k − αhΓ h
i k. (1.19)

Therefore,

diαk + dkαi = αi,k + αk,i − αhΓ h
i k − αhΓ h

k i (1.20)

In a coordinate system where αi = 0 (i < n) and αn = 1, we have

αi,k = (gpiα
p),k = gpi,k α

p = gni,k , (1.21)

and, therefore,
αi,k +αk,i = gni,k +gnk,i . (1.22)

On the other hand,

αlΓilk + αlΓkli = 2Γink = gni,k + gnk,i − gik,n, (1.23)

From (1.20), (1.22) and (1.23), we obtain

dkαi + diαk =
∂gik
∂xn

. (1.24)

1.6 Killing symmetry and the Lie derivative

When the metric does not depend on xn, (1.24) yields

dkαi + diαk = 0. (1.25)

We then have that
eidα = −2(dα)i. (1.26)

Indeed,

eidα = eid(αkdx
k)] = ei[(αk,m − αm,k)(dxm ∧ dxk)] = (αk,i − αi,k)dxk,

(1.27)
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where the parenthesis around dxm∧dxk is meant to signify that we sum
over a basis of differential 2−forms, rather than for all values of i and k.
By virtue of (1.18), (1.19) and (1.25), we have

2(dα)i = (diαk − dkαi)dxk = [(αi,k − αhΓ h
i k)− (αk,i − αhΓ h

k i)]dx
k.

(1.28)
We now use that Γ h

i k = Γ h
k i in coordinate bases, and, therefore,

2(dα)i = (αi,k − αk,i)dxk = −eidα. (1.29)

Hence (1.26) follows, and (1.16) becomes

Xu = αidiu−
1

2
eidα ∧ eiu. (1.30)

Notice that we have just got Xu in pure terms of differential forms,
unlike (1.16), where (dα)i makes implicit reference to the differentiation
of a tensor field.

An easy calculation (See Kähler 1962) yields

−2eidα = dα ∨ u− u ∨ dα. (1.31)

Hence,

Xu = αidiu+
1

4
dα ∨ u− 1

4
u ∧ dα, (1.32)

which is our final expression for the Lie derivative of a differential form
if that derivative is associated with a Killing symmetry.

1.7 Remarks for improving the Kähler calculus

The Kähler calculus is a superb calculus, and yet Cartan would have
written it without coordinate bases. We saw in chapter one the disad-
vantage that these bases have relative to the orthonormal ωi’s, which are
differential invariants that define a differentiable manifold endowed with
a metric. In this section, the disadvantage lies in that one needs to have
extreme care when raising and lowering indices, which is not a problem
with orthonormal bases since one simply multiplies by one or minus one.
Add to that the fact that dxi does not make sense since there are not
such a thing as “covariant curvilinear coordinates”. On the other hand,
ωi is well defined.

Consider next the Killing symmetry, (1.25). The dkαi are associated
with the covariant derivative of a vector field. But they could also be
associated with the covariant derivatives of a differential 1-form. Indeed,
we define (diα)k by

diα = (αk,i − αlΓ l
k i)dx

k ≡ (diα)kdx
k. (1.33)
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But
dkαi ≡ αk,i − αhΓ h

k i. (1.34)

Thus
(diα)k = dkαi (1.35)

and the argument of the previous two sections could have been car-
ried out with covariant derivatives of differential forms without invoking
components of vector fields.

1.8 Derivation of Lie differentiation as partial dif-
ferentiation

Because the treatment of vector fields and Lie derivatives in the modern
literature is what it is, we now proceed to show how a Lie operator as
defined by Kähler (and by Cartan, except that he did not use this termi-
nology but infinitesimal operator) can be reduced to a partial derivative.

Consider the differential system

∂xi

∂λ
= αi(x

1, ... xn), (1.36)

the αi not depending on λ. One of n independent “constant of the mo-
tion” (i.e. line integrals) is then additive to λ. It can then be considered
to be λ itself. Denote as yi (i = 1, n− 1) a set of n− 1 such integrals,
independent among themselves and independent of λ, to which we shall
refer as yn. The yi’s (i = 1, n) constitute a new coordinate system and
we have

xi = xi(y1, , yn). (1.37)

In the new coordinate system, the Lie operator reads X = βi∂/∂yi. Its
action on a scalar function is

βi
∂f

∂yi
= αl

∂f

∂xl
=
∂xl

∂λ

∂f

∂xl
=

∂f

∂yn
. (1.38)

We rewrite u (given by (1.5)), as

u =
1

p!
ai1...ip

∂xi1

∂yi1
∂xip

∂yip
dyk1 ∧ ... ∧ dykp , (1.39)

and then

∂u

∂yn
=

1

p!

∂ai1...ip
∂yn

∂xi1

∂yi1
∂xip

∂yip
dyk1 ∧ ... ∧ dykp+

+
1

(p− 1)!
ai1...ip

∂

∂yn

(
∂xi1

∂yk1
dyk1

)
∂xi2

∂yk2
∂xip

∂ykp
dyk2 ∧ ... ∧ dykp .

(1.40)
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We now use that

∂ai1...ip
∂yn

=
∂ai1...ip
∂xi

∂xi

∂yn
= αi

∂ai1...ip
∂xi

(1.41)

and that

∂

∂yn

(
∂xi1

∂yk1
dyk1

)
=

∂

∂yk1

(
∂xi1

∂yn

)
dyk1 = d

(
∂xi1

∂yn

)
= dαi1 . (1.42)

Hence

Xu =
∂u

∂yn
=

1

p!
αi
∂ai1...ip
∂xi

dxi1...ip +
1

p!
ai1...ipdα

i ∧ dxi2 ∧ ...∧ dxip . (1.43)

and finally

Xu =
1

p!
αi
∂u

∂xi
+ dαi ∧ eiu, (1.44)

2 Angular momentum

The components of the angular momentum operators acting on scalar
functions are given by (1.3), and therefore

αk = −xjdxi + xidxj, (2.1)

and
dαk = −dxj ∧ dxi + dxi ∧ dxj = 2dxi ∧ dxj ≡ 2wk. (2.2)

Hence

χku = xi
∂u

∂xj
− xj ∂u

∂xi
+

1

2
wk ∨ u−

1

2
u ∧ wk. (2.3)

The last two terms constitute the component k of the spin operator. It
is worth going back to (1.7) and (1.10), where we have the entangled
germs of the orbital and spin operator, if we replace χwith χk. It does
not make sense to speak of spin as intrinsic angular momentum until u
represents a particle, which would not be the case at this point.

Kähler denotes the total angular momentum as K + 1, which he
defines as

(K + 1)u =
3∑
i=1

χiu ∨ wi. (2.4)

He then shows by straightforward algebra that

−K(K + 1) = χ2
1 + χ2

2 + χ2
3. (2.5)

He also develops the expression for (K + 1) until it becomes

(K + 1)u = −
∑
i

∂u

∂xi
∨ dxi ∨ rdr+

∑
i

xi
∂u

∂xi
+

3

2
(u− ηu) + gηu (2.6)
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and also

(K + 1)u = −ζ∂ζu ∨ rdr +
∑
i

xi
∂u

∂xi
+

3

2
(u− ηu) + gηu, (2.7)

where η is as in previous chapters, where ζ reverses the order of all the
differential 1−form factors in u and where g ≡ dxi ∧ ei. This expression
for (K + 1)u is used in the next section.

3 Strict harmonic differential forms in E3 − {0}
This section is a somewhat abbreviated form of Kähler’s treatment of
strict harmonic differential forms in E3−{0}, meaning the 3-D Euclidean
space punctured at the origin of coordinates.

Kähler starts his argument with considerations on Laurent series of
harmonic functions. He states that “... one can prove that every time
differentiable harmonic function in E3 − {0} can be written as a series”

f =
∞∑

h=−∞

f (h), (3.1)

where f (h) is a homogeneous polynomial of degree h of homogeneity, for
h ≥ 0, and its the product of polynomial by r2h+1 for h < 0 (A theorem
along similar lines in the modern literature can be found in the book
”Harmonic Function Theory” by S. Axler, P. Bourdon and W. Ramey,
copyrighted in 2001). From there, Kähler argues that one can expand a
strict harmonic differential form u as

u =
∞∑
−∞

u(h), (3.2)

where u(h) is (a) a homogeneous of degree h with respect to the Cartesian
coordinates, and (b) also being polynomic for h ≥ 0, and finally the
product of a polynomial by r−2h−1 for h < 0.

We shall consider 3.2 as an ansatz with u(h)’s of type (a). As for (b),
we shall deal with this in due time. Be aware of the fact that 3.1 is not
contained in 3.2, since the former is for harmonic functions and 3.2 is for
strict harmonic differential forms. Obviously, non-trivial strict harmonic
functions do not exist.

3.1 Simplification by reduction

Kähler shows that there is isomorphisms between modulesMh andM−h−2,
for −∞ < h < ∞, the subscript h being the degree of homogeneity h
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of the members of the module. One can show that the module M−1 is
empty.

Let u be strict harmonic of degree h. Then,

∂(r−2h−2dr ∨ u) = ∂(r−2h−2dr) ∨ u+ 2[el(r−2h−2dr)] ∨ dlu, (3.3)

by virtue of the rule for ∂(v ∨ u) and the assumption ∂u = 0.
Let us compute the first term on the right hand side

∂(r−2h−2dr) = −(2h+ 2)r−2h−3 + r−2h−2∂dr. (3.4)

For ∂dr, we need a little bit of computations which we address using
Cartan’s notation (If not familiar with it, see this author’s ”Differential
Geometry for Physicists and Mathematicians”). Clearly ∂dr = ωl · dldr,
where

ω1 = dr, ω2 = rdθ, ω3 = r sin θdφ. (3.5)

Using
dωi = ωj ∧ ωij, ωij + ωji = 0, (3.6)

one readily obtains

ω2
1 = dθ ω3

1 = sin θdφ, ω3
2 = cos θdφ. (3.7)

Then,
dl(dr) = dlω

1 = −Γ1
l iω

i = −ω1
l . (3.8)

Hence

∂(dr) = ωl · dl(dr) = ω2 · (−ω1
2) + ω3 · (−ω1

3) =

= rdθ · dθ + r sin θdφ · sin θdφ =
1

r
+

1

r
=

2

r
(3.9)

which will go into the last term of (3.4) and then, therefore, into the
first term of (3.3). For the second term of (3.3), we use that

el(r−2h−2dr) = el(r−2h−3rdr) = el(r−2h−3xidxi) = r−2h−3xl (3.10)

so that it becomes

2r−2l−3xl
∂u

∂xl
= 2hr−2h−3u, (3.11)

after using the homogeneity of u in dlu.
From (3.3), (3.4), (3.9) and (3.11), we get

∂(r−2h−2dr ∨ u) = 0. (3.12)
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hence r−2h−2 is strict harmonic. Its degree of homogeneity is −h − 2.
We write the result just obtained as

r−2h−2dr ∨ uh = v−h−2. (3.13)

No assumption was made as to whether h is positive, or negative, or
zero. We proceed to confirm this.

We multiply (3.13) by r2h+2dr and obtain

r2h+2dr ∨ v−h−2 = uh (3.14)

which is equivalent to referring to −h−2 as l, in which case, the exponent
2h+ 2 becomes

2h+ 2 = 2(−l − 2) + 2 = −2l − 2 (3.15)

and
r−2l−2dr ∨ vl = u−l−2, (3.16)

in agreement with (3.13).
It follows from all this that it suffices to compute Mh for h ≥ 0 in

order to readily obtain M−h−2. It also suffices to compute the subset
of even differential forms in Mh since the even ones will be obtained
through Clifford multiplication by the unit differential form of grade n.

3.2 Eigen differential forms of total angular mo-
mentum

We seek as expansion of strict harmonic differentials by eigen differential
forms of the total angular momentum operator, since the equation ∂3u =
0 has spherical symmetry.

The elements of Mh are of the form a+ v where a and v are respec-
tively differential 0-form and 2-form respectively. The formula for the
action of K on a+ v is

Ku = −(h+ 1)a+ [(h+ 1)v − 2da ∧ rdr] (3.17)

Kähler shows that a necessary and sufficient condition for a+v to be an
eigen differential of K with proper value k is that the equations

−(h+ 1)a = ka, (h+ 1)v − 2da ∧ rdr = kv (3.18)

be satisfied. This can be achieved in any of the two following ways:

I : a = 0, k = h+ 1 (3.19)

II : k = −h− 1, (h+ 1)v − da ∧ rdr = kv. (3.20)
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The solutions of type I are of the form

u = df ∨ w, ∂∂f = 0, (3.21)

where the annulment of ∂∂f follows from ∂u = 0.
The solutions of type II can be written as

u = a+
1

h+ 1
da ∧ rdr, ∂∂a = 0, (3.22)

(for the proof of ∂∂a = 0, see further below) and further as

u = a+
1

h+ 1
(da ∨ rdr − da · rdr) =

= a+
1

h+ 1
(da ∨ rdr − ∂a

∂xi
dxi · xjdxj) = a+

1

h+ 1
∂a ∨ rdr − h

h+ 1
a.

Hence we have

u =
1

h+ 1
(a+ ∂a ∨ rdr), ∂∂a = 0, (3.23)

as alternative to (3.22).
We now prove that ∂∂a = 0. We use (3.23) and

∂(u ∨ v) = ∂u ∨ v + (ηu ∨ ∂v) + 2eiu ∨ div,

to obtain

0 = ∂u = ∂((h+ 1)u) = ∂(a+ ∂a ∨ rdr) =

= ∂a+ ∂∂a ∨ rdr − ∂a ∨ ∂(rdr) + 2
∂a

∂xi
∨ di(rdr). (3.24)

But the sum of the first, third and fourth term on the right of (3.24)
cancel out, since di(rdr) = dxi and

∂(rdr) = ∂(xidx
i) =

∑
dxi ∨ dxi = 3. (3.25)

So, (3.24) becomes

0 = ∂u = ∂∂a ∨ rdr.

Clifford multiplication by 1
r
dr on the right yields ∂∂a = 0.

Notice that we could have used the fact that h ≥ 0, but have not
done so.
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The solutions of type II can still be given another form. First notice
that if we multiply the right hand side of (3.22) by h + 1 we reproduce
the submodule. So let us write the u in (3.22) and (3.23) further as

u = (h+ 1)a+ da ∧ rdr. (3.26)

Now observe the following:

−r2h+2dr ∨ d(r−2h−1a) = (2h+ 1)a− rdr ∨ da, (3.27)

but

dr ∨ da = dr ∧ da+
∑ xi

r

∂a

∂xi
= −da ∧ dr +

h

r
a. (3.28)

Hence, from (3.27) and (3.28)

−r2h+2dr∨d(r−2h−1a) = (2h+1)a+da∧rdr−ha = (h+1)a+da∧rdr = u,
(3.29)

where we have used (3.26) for the last step..
From this equation follows a very important result. Notice that equa-

tion (3.13) states that the Clifford product by r−2h−2dr of a strict har-
monic differential form of degree of homogeneity h gives a strict harmonic
differential form of degree −h − 2. In (3.29), we solve for d(r−2h−1a)
through multiplication by −r−2h−1dr and, since u is homogeneous of de-
gree h, we conclude that d(r2h−2a) is strict harmonic of degree −h− 2.

Kähler obtains the same result in a different way. Assume that the a’s
are harmonic functions. Since r−2h−1a is obtained from a by replacement
of xi by xi/r2 followed by division by r, it also is harmonic. Hence, it
follows from ∂∂(r−2h−1a) = 0 that ∂(r−2h−1a), which equals d(r−2h−1a),
is strict harmonic of degree −h − 2. This leads Kähler to write the
submodule of even differential forms as

1 + η

2
Mh = dFh+1 ∨ w + r2h+2dr ∨ dF−h−1, h ≥ 0, (3.30)

where Fh is the module, say over the complex field, of homogeneous
harmonic polynomials of degree h, and F−h−1 is the set of harmonic
functions r−2h−1a.

The members of the module (3.30), but without the input of Fh for
h ≥ 0 being harmonic polynomials, would simply be written as

uh = dah ∨ w + r2h+2dr ∨ d(r−2h−1bh), (3.31)

where ah and bh are arbitrary harmonic functions. As we just said after
Eq.(3.25), h could be ≥ 0 or < 0. We have not assumed one or the other.
As for the odd differential forms, they would be given as

uh = deh + r2h+2dr ∨ d(r−2h−1fh) ∨ v, (3.32)

where eh and fh are arbitrary harmonic functions.
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3.3 Angular factor of strict harmonic differential
form solutions of ∂3u = 0

In chapter 2, we already saw that one can accommodate less symmetry
in solutions of equations than on the equations themselves. We now look
at a similar situation from another perspective.

The Laplacian operator is isotropic. Its solutions are not so in gen-
eral. In other words, they are not spherically symmetric because of their
dependence on θ and φ. So, how does the symmetry of an equation
reflect itself in its solutions. The answer for Kähler equations with, for
example, spherical symmetry,

∂u = a ∨ u, (3.33)

means that, when we obtain ∂u for any solution, we not recover the
solution left multiplied by some spherical symmetric u.

With this observation, we can understand Kähler’s construction of
solutions from homogeneous harmonic polynomials, namely

Fk =
l∑

m=−l

C · rkY m
k , l = |k| (3.34)

where C stands for complex coefficients Ck
l . The d(rkY m

k ) are strict
harmonic differentials, as per the first term on the right of (3.32) or
because 0 = ∂∂(rkY m

k ) = ∂[d(rkY m
k )]. We do not want solutions of

∂3u = 0, but of the Kähler equation. So, we seek solutions whose Kähler
derivative will behave as specified in the previous paragraph.

He then defines the “spherical differentials”, Smk ,

Smk = r1−kd(rkY m
k ). (3.35)

These are differential 1-forms of degree of homogeneity zero. Using that
d(rkY m

k ) is strict harmonic, we readily obtain

∂Smk =
1− k
r

dr ∨ Smk . (3.36)

It is not as easy to obtain the following important result for later use:

drS
m
k = 0, (3.37)

for later use. The argument goes as follows. The dh operator is covariant,
i.e. it transforms tensorially. Use a superscript to denote the coordinate
system with which one is computing. Denote d

(x)
h and d

(y)
h as vh and v′h.
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Clearly, v′i = (∂xl/∂yi)vl. Thus d
(y)
i = (∂xl/∂yi)d

(x)
l and with dr denoting

d
(y)
i for yi = r, we have

dru =
∂xi

∂r
d
(x)
i u =

xi

r

∂u

∂xi
=
h

r
u. (3.38)

Since Smk is homogeneous of degree zero, Eq. (3.37) follows.

3.4 Inclusion of the radial factor

We now seek radial factors R that will satisfy the rotational symmetry
around all three axes,

XiR = 0. (3.39)

We show below that

∂(R ∨ Smk ) = (∂R + ηζR ∨ 1− k
r

dr) ∨ Smk , (3.40)

the angular dependence on the right hand side thus being confined to
Smk .

In order to satisfy (3.39), one requires R to be of the form R =
R1 +R2, where

R1 = ρ0 + ρ1dr1, R2 = (ρ2 + ρ3dr) ∨ w, (3.41)

with ρν = ρν(r). In turn, we can rewrite this as

R = R1 +R2 ∨ w, eθR1,2 = eφR1,2 = 0. (3.42)

Using (3.28) and (3.42), we get

∂(R1 ∨ S) = ∂R1 ∨ S + ηR1 ∨ ∂S, (3.43)

and recalling that w is a constant differential and commutes with the
whole algebra,

∂(R2 ∨ w ∨ S) = ∂(R2 ∨ S ∨ w) = ∂(R2 ∨ S) ∨ w =

= ∂R2 ∨ S ∨ w + ηR2 ∨ ∂S ∨ w (3.44)

= ∂R2 ∨ w ∨ S + ηR2 ∨ w ∨ ∂S.

Needless to say that indices k and m are understood everywhere. Since
R1 −R2 ∨ w = τR, we further get, using (3.43) and (3.44)

∂(R ∨ S) = ∂R ∨ S + ηζR ∨ ∂S, (3.45)

which, together with (3.36), implies (3.40).]
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3.5 The general solution

The Sk defined by

Sk =
+l∑

m=−l

C · Smk (l = |k|) (3.46)

constitutes a C-module. Then, by virtue of (3.34) and (3.35),

dFk = rk−1Sk (3.47)

and, then, following (3.30) and that

1− η
2

Mh =
1 + η

2
Mh ∨ w, (3.48)

(equivalently eqs, (3.31) and (3.32)), we finally get

Mh = rhSh+1 + rhdr ∨ S−h−1 + rhSh+1 ∨ w + rhdr ∨ S−h−1 ∨ w. (3.49)

(Notice that the first and last terms on the right are from (3.32) and
the other one from (3.31). This is, as we argued, valid for h ≥ 0 and
h < 0. Kähler had assumed h ≥ 0. One then Clifford-multiplies (3.49)
by r−2h−2dr and obtains

M−h−2 = r−h−2dr ∨ Sh+1 + r−h−2S−h−1+

+ r−h−2dr ∨ Sh+1 ∨ w + r−h−2w ∨ S−h−1. (3.50)

Of course, the form of the right hand side of (3.49) is identical to the
form of the right hand side of (3.50). Hence, once again, (3.49) is valid
regardless of whether h is positive, zero or negative.

The expansion of Mh leads to the following expansion over the indices
K and m

u =
∑
k,m

Rk
m ∨ Smk (3.51)

Rm
k = rk(akm + bkmdr + ckmw + fkmdr ∨ w) (3.52)

with constant coefficients akm, bkm, ckm and fkm.

4 The fine structure of the hydrogen atom

It takes no extra effort to let the charge of the nucleus be Z|e|. This
amounts to neglecting the interaction of the electrons in the atom.

The electromagnetic potential then takes the simple form

ω = −cΦdt, Φ =
Z|e|
r
. (4.1)
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The Kähler equation now is

∂u =
1

hc
(−E0 +

Zc2

r
icdt) ∨ u, (4.2)

where E0 is the mass of the electron. We apply to (4.2) the treatment
for stationary solutions reported in the previous chapter with

u = p ∨ e−
iEt
~c ε− (4.3)

where E is the energy of the electron in the external field. α and β as
defined in chapter 4 now take the form

α = −E0

~c
, β =

1

~c
Ze2

r
(4.4)

and the equation for p becomes

∂p− 1

~c
(E +

Ze2

r
) ∨ ηp+

1

~c
E0p = 0. (4.5)

Because of spherical symmetry, we use the ansatz

p = R ∨ Smk , (4.6)

where R is spherically symmetric. From (4.5), (4.6) and (3.40), we obtain

[∂R + ηζR ∨ 1− k
r

+
1

~c
(E +

Ze2

r
) ∨ ηR +

1

~c
E0R] ∨ Smk = 0. (4.7)

Let us refer to the contents of the square brackets as R and let us
solve (4.7) by setting R = 0. On account of the first of equations (3.42),
we write this as

R1 +R2 ∨ w = 0, (4.8)

where Ri is R with R replaced with Ri(i = 1, 2). Hence we proceed to
solve the equation

∂Ri + ηRi ∨
1− k
r

dr ± 1

~c
(E +

Ze2

r
)ηRi +

1

~c
E0Ri = 0, (4.9)

where the top and bottom signs correspond to R1 and R2 respectively.
Both R1 and R2 are sums of 0-form and 1-form that only depend on

r and dr. For later comparison with equations in the physics literature,
we write:

Ri = f(r)dr − g(r), (4.10)

where the subscript i for f and g is understood but not made explicit
because the sign ± to be used now makes it unnecessary.
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When computing ∂Ri we encounter ∂dr, which we found to be 2/r
(see eq. (3.9). We take ∂Ri into (4.9) and set equal to zero both the
scalar part and the coefficient of dr. We obtain the two systems

df

dr
+

1 + k

r
f =

1

~c
[E0 ± (E +

Ze2

r
)]g, (4.11)

dg

dr
+

1− k
r

g =
1

~c
[E0 ∓ (E +

Ze2

r
)]f, (4.12)

respectively for the upper and lower signs. For each of the two systems,
we have the sign plus in front of k in the first equation and the minus
sign in the second equation. This difference arises from the action of η
on the 0-form and 1-form parts of each of the Ri’s, and similarly for the
change from ± to ∓. The two systems corresponds to the two solutions

u = [f(r)dr − g(r)] ∨ Smk ∨ T− (4.13)

with f and g solutions of the first system, and

u = [f(r)dr − g(r)] ∧ Smk ∨ w ∨ T−, (4.14)

with f and g solutions of the second system and where

T− ≡ e−
iEt
~c ε−. (4.15)

Notice that we can obtain the (first) system

df

dr
+

1 + k

r
f =

1

~c
[E0 + (E +

Ze2

r
)]g, (4.16)

dg

dr
+

1− k
r

g =
1

~c
[E0 + (E +

Ze2

r
)]f, (4.17)

from the second one

df

dr
+

1 + k

r
f =

1

~c
[E0 − (E +

Ze2

r
)]g, (4.18)

dg

dr
+

1− k
r

g =
1

~c
[E0 + (E +

Ze2

r
)]f, (4.19)

by the exchange (f, g) → (g, f) and k → −k. We use this fact to
reduce the problem of solving two systems to solving just one by fur-
ther observing that, up to the sign, we can also obtain this replacement
(f, g)→ (g, f) in (4.13) through multiplication by dr, i.e.

[f(r)dr − g(r)]dr = −[g(r)dr − f(r)]. (4.20)
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The factor −1 can be ignored since it is absorbed into the coefficient of
Smk . And the change in sign of k is absorbed because −∞ < k <∞, or
k = |k|, 0,−|k|. Hence, we remove the subscript in (4.10) and use R to
refer to R2. We thus write the solutions (4.13) and (4.14) as

u = R ∨ Smk ∨ T− and u = R ∨ dr ∨ w ∨ Smk ∨ T−. (4.21)

The system (4.18)-(4.19) is well known from the treatment of one-
electron atoms with the Dirac equation, as per section 151 of volume
XXXV of the Handbuch der Physik, or as the treatment in the book
”Quantum Mechanics of One – and Two – electron Atoms” by E. E.
Salpeter and H. Bethe. See also many other books on quantum mechan-
ics (Notice that, in those references, the role of k is played by −κ). We
thus need not go further as the obtaining of the fine structure continues
in the standard way.
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