
Chapter 6

Conservation in Quantum
Mechanics, and Beyond
Hodge’s Theorem

6.1 Introduction

In this chapter, we deal with results in physics and mathematics that arise
from Kähler’s first Green’s identity for differential forms. On the left hand
side of this identity, there is a exterior differentiation. If the right hand side is
zero, so is the left hand side and, by Stoke’s theorem, the conservation law of
the exterior calculus follows. We shall see that, in the KC as in Dirac’s theory,
the right hand side of the Green identity that gives rise to the conservation
law is quadratic in the wave function or, more precisely, linear in it and its
conjugate. Of great interest is the specialization of this right hand side when
we write the wave function as a sum of two parts, respectively associated with
the two ideals in the algebra that are defined by time translation symmetry.

When the coupling is electromagnetic, what is conserved – aside from
energy – is some magnitude which comes with both signs. The magnitude is
conserved, not what each of the parts refers to. The obvious interpretation
or the conserved magnitude is charge, not probability, which does not come
with both signs and can thus only be a derived concept. This implies a
radically new vision of quantum physics.

Another important application of Green’s first identity is a uniqueness
theorem for a differential form on a manifold (or region thereof) when both
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2 CHAPTER 6. CONSERVATION & HODGE’S THEOREMS

its exterior and interior derivatives are given, as well as the specification
of the differential form at the boundary. This theorem is instrumental in
obtaining a Helmholtz theorem for differential r−forms in Euclidean spaces
En and in regions or r-surfaces thereof. This results immediately generalizes
by embedding to any differentiable manifold, Riemannian ones in particular,
that can be embedded in Euclidean spaces.

The generalization of Helmholtz theorem is at the same time a gener-
alization of Hodge’s decomposition theorem, since one not only derives the
latter theorem, but one actually obtains their forms as integrals, in the guise
of Helmholtz theorem. In the Helmholtz theorem of the vector calculus, as in
its translation to differential forms and generalization to any grade of the dif-
ferential form and any dimension of the Euclidean space, one of the two terms
is closed and the other one is co-closed. The appearance in Hodge’s theorem
of a term – the harmonic one – is due to the fact that certain terms that
cancel at the boundary under the more restricted conditions of applicability
of Helmholtz theorem no longer do so.

In conclusion, high power results in both physics and mathematics arise
from Green’s first identity of the Kähler calculus.

6.2 Green’s identities

Kähler defines scalar products of different grades for arbitrary differential
forms. For arbitrary differential forms, they are written as (u, v)r, where r
is the complement to n of the grade of the product. The notations (u, v)0

and (u, v)1 will be used to refer to scalar products of grades n and n −
1 respectively, which we are about to define. We shall confine ourselves
to defining scalar products of those grades, which are the only ones that
enter Kähler’s Green identity. Due to the fact that there is no possibility
for confusion, Kähler uses the symbol (u, v) for what we have momentarily
called (u, v)0, and reserves the subscript zero to refer to the 0-grade part of
differential forms of, in general, ”inhomogeneous grade”.

Following Kähler, we shall use the symbol ζ for the operator that reverses
the order of vectors in all products. The scalar product of grade n, or simply
scalar product, is defined as

(u, v) = (ζu ∨ v) ∧ z, (6.1)

although, as Kähler himself points out, it is better to use the term scalar
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product to refer to the actual evaluation, i.e. integration, of the differential
form (u, v). Since the right hand side of (6.1) obviously vanishes unless ζu∨v
is a 0-form, it can be rewritten as

(u, v) = (ζu ∨ v)0z = (ζu ∨ v) ∧ z. (6.2)

One similarly defines:

(u, v)1 = ei(dx
i ∨ u, v) = ei[(ζu ∨ dxi ∨ v) ∧ z]. (6.3)

We shall later use that
(u, v) = (v, u) (6.4)

i.e. that (ζu ∨ v)0 equals (v ∨ ζu)0, which is trivial.
We shall also use that

dei = di − eid. (6.5)

Indeed
deiu = dei(dx

i ∧ u′ + u′′) = du′ (6.6)

diu = di(dx
i ∧ u′ + u′′) = dxi ∧ diu′ + diu

′′, (6.7)

and

−eidu = −ei(−dxi ∧ du′ + du′′) = du′ − dxi ∧ eidu′ − eidu′′. (6.8)

But
eidu

′ = diu
′, eidu

′′ = diu
′′. (6.9)

Using (6.9) in (6.8) and bringing (6.6), (6.7) and (6.8) together, we get (6.5).
We now prove Green’s first identity, which reads

d(u, v)1 = (∂u, v) + (u, ∂v). (6.10)

We differentiate (6.3), use (6.5) and the fact that the square bracket on
which the operator d is acting is a differential n-form and that, therefore, its
exterior derivative is zero. We thus have:

d(u, v)1 = dei[(ζu ∨ dxi ∨ v) ∧ z] = di[(ζu ∨ dxi ∨ v) ∧ z]−
−eid[(ζu ∨ dxi ∨ v) ∧ z] = di[(ζu ∨ dxi ∨ v) ∧ z]. (6.11)

But diz = 0. Hence

d(u, v)1 = di(...) ∧ z = (diζu) ∨ dxi ∨ v ∧ z + (ζu ∨ dxi ∨ div) ∧ z, (6.12)
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where we have used the distributive property of the di operator and that di
of dxi is zero, where “...” stands for ζu ∨ dxi ∨ v.

We now use that

(diζu) ∨ dxi = (ζduu) ∨ dxi = ζ(dxi ∨ diu) = ζ∂u. (6.13)

The first term on the right hand side of (6.10) follows from the first term on
the right hand side of (6.12). For the second term, just notice that dxi ∧ div
equals ∂v. End of proof.

A second Green identity results by first replacing first v and later u with
∂v and ∂u respectively. Thus

d(u, ∂v)1 = (∂u, ∂v) + (u,∆v), (6.14)

d(v, ∂u)1 = (∂v, ∂u) + (v,∆u). (6.15)

where ∆ stands for ∂∂. Subtracting (6.15) from (6.14), we get

(u,∆u)− (v,∆u) = d[(u, ∂v)1 − (v, ∂u)1]. (6.16)

Needless to say that there are other Green identities, like, for instance, if we
replace both u and v with ∂u and ∂v.

6.3 The two signs of charge

6.3.1 The conjugate Kähler equation

The first Green identity prompts us to find a conjugate Kähler equation
such that its solutions v will give rise to a conservation law through scalar
multiplication with the solutions u of the “direct Kähler equation”. We seek
it in the form ∂u = bu, and try to find b as a function of a. We do not yet
assume electromagnetic coupling. We shall solve the equation

(u, ∂v) = −(v, ∂u). (6.17)

We have

(u, ∂v) = (∂v, u) = (bv, u) = [ζv ∨ ζb ∨ u] ∧ z = (v, ζb ∨ u). (6.18)

For (6.18) to become (6.17), we want

(ζb)u = −∂u = −au. (6.19)
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Hence
b = −ζa, (6.20)

and the conjugate Kähler equation therefore is

∂u = −(ζa)u. (6.21)

We have thus shown that, if u and v are respective solutions of a direct and
its conjugate Kähler equation, then d(u, v)1 = 0 because (∂u, v)+(u, ∂v) = 0.

6.3.2 The electromagnetic conservation law

We now show that if u is a solution of the electromagnetic Kähler equation,
ηu is a solution of its conjugate equation. For electromagnetic coupling,

a = iE0 + eφ, (6.22)

with e = ∓|e| and with φ as the electromagnetic 1-form. Let overbar denote
complex conjugation. Since ∂η = −η∂ and ηā = a = ζa, we have

∂(ηu) = −η∂u = −η∂u = −η(a ∨ u) = −a ∨ ηu = −(ζa) ∨ ηu. (6.23)

The conservation law then takes the form

d(u, ηv)1 = 0, (6.24)

and, in particular,
d(u, ηu)1 = 0. (6.25)

6.3.3 Computations with scalar products

We produce some formulas needed for the computation of (u, ηu)1 when we
split u into members of complementary ideals associated with time transla-
tion symmetry.

Taking into account (6.4), the equation

(ζu, ζv) = (u, v) (6.26)

readily follows since

(ζu, ζv) = (u ∨ ζv)0z = (u ∨ v)0z = (u, v). (6.27)
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(6.26) is used in

(u ∨ w, v) = (w, ζu ∨ v) = (ζu ∨ v, w) = (ζ(ζu ∨ v), ζw) =

= (ζu ∨ v ∨ ζw)0z = (u, v ∨ ζw), (6.28)

where the first step follows from the definition of scalar product of grade n;
we have then used (6.4) and (6.26).

Since ζ(w, u) ∨ v = ζu ∨ (ζu ∨ v), it readily follows that

(w ∨ u, v) = (u, ζw ∨ v), (6.29)

which is in turn used to obtain

(dxµ ∨ u, v) = (u, ζdxµ ∨ v) = (u, dxµ ∨ v) = (dxµ ∨ v, u) (6.30)

and, therefore,
(v, u)1 = (u, v)1. (6.31)

We shall later need

(u ∨ w, v)1 = (u, v ∨ ζw)1, (6.32)

which we prove as follows

(u ∨ w, v)1 = eµ{[ζ(u ∨ w) ∨ dxµ ∨ v] ∧ z} = eµ(u ∨ w, dxµ ∨ v)

= eµ(u, dxµ ∨ v ∨ ζw) = (u, v ∨ ζw)1, (6.33)

where we have used (6.28).
We are using Greek symbols to emphasize that we are not restricting

ourselves to 3-space. We shall later use spacetime indices (Greek) and 3-
space indices (Latin) in the same argument.

6.3.4 The current (u, ηv)1 in terms of elements of the
ideals generated by ε±

Recall
u = +u ∨ ε+ + −u ∨ ε−, v = +v ∨ ε+ + −v ∨ ε−. (6.34)

In the next few lines, let ε be ε+ or ε− but not both at the same time. Since
ε is an idempotent, ε ∨ ε = ε. Also, ζε = ε. Hence

(u ∨ ε, ηv ∨ ε)1 = (u ∨ ε ∨ ε, ηv ∨ ε)1 = (u ∨ ε, ηv ∨ ε ∨ ζε)1 = 0 (6.35)
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where we have used (6.32) and that

ε ∨ ζε = ε ∨ ε = 0 (6.36)

since ε± = ε∓ and ε+ε− = ε−ε+ = 0.
In order to simplify notation, let us define

[u, v] = (u, ηv)1. (6.37)

We shall now use (6.34), (6.35) and (.6.37) to obtain

[u, v] = [+u ∨ ε+,+ v ∨ ε+] + [−u ∨ ε−,− v ∨ ε−]. (6.38)

The +u, −u, +v, −v are spatial differentials since the dt dependence of u and
v has been replaced through dt = (1/i)(ε+− ε−). They are not “strict” since,
in general, they will depend on t. Let such differentials be represented as p
and q. The following then applies to both terms in (6.38)

4[p ∨ ε±, q ∨ εε] = [p, q]∓ [p, q ∨ idt]∓ [p ∨ idt, q] + [p ∨ idt, q ∨ idt]. (6.39)

Using (6.31), we readily prove that the first and second terms are respectively
equal to the fourth and third terms. Hence

[p ∨ ε±, q ∨ ε±] =
1

2
[p, q] ∓ p, q ∨ idt]. (6.40)

6.3.5 The emergence of the terms in the continuity
equation

We proceed to develop [p, q]. For this purpose, we notice that (ζp∨dt∨ηq)0 =
0, since there is no dt factor in ζp and ηq. We also notice an alternative way
of writing (u, v)1

(u, v)1 = eµ(dxµ ∨ u, v) = eµ[(ζu ∨ dxµ ∨ v)0z] = (ζu ∨ dxµ ∨ v)0eµz. (6.41)

Let z and w represent the unit differential 4-form and 3-form respectively.
Then

ekz = ek(w ∧ idt) = ekw ∧ idt. (6.42)

Hence
[p, q] = [(ζp ∨ dxk ∨ ηq)0ekw] ∧ idt = {p, ηq}1 ∧ idt, (6.43)
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where {p, ηq}1 is the symbol used to represent the scalar product of grade
n− 1 in the Kähler algebra for n = 3.

We similarly have

[p, q ∨ idt] = (ζp ∨ dt ∨ ηq ∨ idt)0etz = −i(ζp ∨ dt ∨ dt ∨ q)0wi =

= −(ζp ∨ q)0w = −{p, q}. (6.44)

Notice the presence of the first dt, instead of dxi, inside the parenthesis,
based on the same type of argument as before.

In view of (6.43) and (6.44), Eq. (6.39) now reads

2[p ∨ ε±, q ∨ ε±] = {p, ηq}1 ∧ idt+ pm{p, q}. (6.45)

We next make q = p = +u in (6.46) and obtain

[+u ∨ ε+,+ u ∨ ε+] =
1

2
{+u,+ u}+

1

2
{+u, η+u}1 ∧ idt. (6.46)

Next we make q = p =− u and obtain an equation almost equal in form to
(6.46), except that, in addition to the replacement + →− u, there will be a
change in sign in one of the terms. Thus

[u, u] = [+u ∨ ε+,+ u ∨ ε+] + [−u ∨ ε−,− u ∨ ε−] =

=
1

2
{+u,+ u}+

1

2
{+u, η+u}1 ∧ idt (6.47)

− 1

2
{−u,− u}+

1

2
{−u, η−u}1 ∧ idt.

Each of the two lines has the form of a scalar-valued space time current
where the spatial 3-forms are volume densities, ρw, and where the spacetime
3-forms are the currents in the sense similar to the ”vector current”.

In section (§15) of his 1962 paper, Kähler had already made the remark
that, when the metric is positive definite, the product (u, u) for arbitrary u
is a number that is everywhere ≥ 0 times the volume differential, and it is
positive definite at every point P where u(P ) 6= 0. In (6.47), the metric at
work is the Euclidean metric and, therefore, both {+u,+ u} and {−u,− u} are
nowhere negative.

In view of the foregoing considerations and of Eq. (6.47), Kähler con-
cludes that the characterization of the negative electrons state differential
form u by u ∨ ε− = u, u ∨ ε+ = 0 brings about a density

ρw = −|e|
2
{−u,− u}



6.4. UNIQUENESS THEOREM FOR DIFFERENTIAL K−FORMS 9

with ρ ≤ 0 everywhere.
This is a tremendously important result for the foundations of quantum

mechanics. It shows that, in Kähler’s theory, the wave ”function” is not a
probability amplitude but, so to speak, a “charge amplitude”.

6.4 A uniqueness for differential k−forms of

definite grade under Helmholtz type con-

ditions

Let R be a differentiable manifold and let ∂R be its boundary. Let (u1, u2)
be differential k−forms in R such that du1 = du2, δu1 = δu2 on R, and that
u1 equals u2 on ∂R. The uniqueness theorem states that the differential form
is uniquely defined.

β defined as u1 − u2 satisfies

dβ = 0 = δβ on R, β = 0 on ∂R, (6.48)

and, locally,

(β = dα, δdα = 0) on R, dα = 0 on ∂R. (6.49)

Equation (6.10) with u = α and v = dα reads

d(α, dα)1 = (α, ∂dα) + (dα, ∂α). (6.50)

We use (6.49) to obtain

(α, ∂dα) = (α, ddα) + (α, δdα) = 0 + 0. (6.51)

Consider next (dα, ∂α). If α is of definite grade, so are dα and δα, but their
grades differ by two units. Their scalar product is, therefore, zero. On the
other hand, we have, with aA defined by dα = aAdx

A (with summation over
the algebra as a module),

(dα, ∂α) = (dα, δα) + (dα, dα) = 0 +
∑
|aA|2 . (6.52)

Substituting (6.51) and (6.52) in (6.50), applying Stokes theorem and using
dα = 0 on R, we get∫

R

∑
|aA|2 =

∫
R

d(α, dα)1 =

∫
∂R

(α, dα)1 = 0. (6.53)
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Hence all the aR’s are zero in R itself and so is, therefore, α and β (=dα).
It follows from the defintion of β as u1 − u2 that u1 = u2. The theorem has
thus been prooved.

6.5 Helmholtz Theorems for k−forms

6.5.1 Helmholtz Theorem for k−forms in E3

In this section, we shall try to avoid potential confusion by replacing the
symbol z with the symbol w for the unit differential 3−form.

With r12 ≡ [(x− x′)2 + (y − y′)2 + (z − z′)2]1/2, the standard Helmholtz
theorem of the vector calculus states

v = − 1

4π
∇
∫
E′3

∇′ · v(r′)

r12

dV ′ +
1

4π
∇×

∫
E′3

∇′ × v(r′)

r12

dV ′. (6.54)

has an immediate translation to the Helmholtz theorem for differential 1−forms
in E3. It reads

α = − 1

4π
d

∫
E′3

(δ ′α′)w′

r12

− 1

4π
δ

(
dxjdxk

∫
E′3

d′α′ ∧ dx′i

r12

)
, (6.55)

This theorem is a particular case of the theorem proved in the next subsec-
tion. It implies a similar theorem for differential 2−forms, as follows from
using that the equation α = wβ, uniquely defines β. We substitute it in
(6.55) and solve for β:

β =
1

4π
wd

(∫
E′3

δ ′(w′β′)

r12

w′

)
+

1

4π
wδ

(
dxjk

∫
E′3

d′(w′β′) ∧ dx′i

r12

)
. (6.56)

Denote the first integral in (6.56) as I and the second one as I i. We have
wdI = δ(wI) and w′δ ′(w′β′) = w′(w′dβ′) = −dβ′ = −dβ′ ∧ 1. The exterior
product by 1 is superfluous, except for the purpose for making later Eq.
(6.60) clear. Similarly, wδ(dxjkI i) = d(wdxjkI i) = −d(dxiI i) and

d′(w′β′) ∧ dx′i = dx′i ∧ d′(w′β′) =
1

2

[
dx′iw′δ ′β′ + w′δ ′β′dx′i

]
=

=
1

2
(dx′jkδ ′β′ + δ ′β′dx′jk) = dx′jk ∧ δ ′β′ = δ ′β′ ∧ dx′jk. (6.57)
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We use these results in (6.56), change the order of the terms and get

β = − 1

4π
d

(
dxi
∫
E′3

δ ′β′ ∧ dx′jk

r12

)
− 1

4π
δ

(
w

∫
E′3

δ ′β′ ∧ 1

r12

)
, (6.58)

Write the first term in (6.55) as

− 1

4π
d

[
1 ∧

∫
E′3

(δ ′α′) ∧ w′

r12

]
. (6.59)

Let the index A label a Cartesian basis of the algebra as module. Let dxĀ

be the unique element in the basis such that dxA ∧ dxĀ = w. Define
∫
E3
γr if

the grade r of γ is different from 3. All four terms on the right of (6.55) and
(6.58) are thus of the form

− 1

4π
d

[
dxA

∫
E′3

(δ ′ ) ∧ dx′Ā

r12

]
or − 1

4π
δ

[
dxA

∫
E′3

(d′ ) ∧ dx′Ā

r12

]
.

(6.60)
Take, for instance, the first of the two expressions in (6.60). We sum over all
A, equivalently, over all Ā′. The grade of (δ ′ ) determines the grade of the
only dx′Ā that may yield not zero integral since the sum of the respective
grades must be 3. For each surviving value of the index Ā, the value of the in-
dex A —thus the specific dxA at the front of the integral— is determined. We
shall later show for ulterior generalization that we may replace the Cartesian
basis with any other basis, which we shall choose to be orthonormal since
they are the “canonical ones” of Riemannian spaces.

6.5.2 Helmholtz Theorem for Differential k-forms in
En

Let ωA (≡ ωi1ωi2 ...ωir) denote elements of a basis in the Kähler algebra of
differential forms such that the ωµ are orthonormal. The purpose of using
an orthonormal basis is that exterior products can be replaced with Clifford
products. Let ωĀ be the monomial (uniquely) defined by ωAωĀ = z, with no
sum over repeated indices.

The generalized Helmholtz theorem in En reads as follows

α = − 1

(n− 2)Sn−1

[d(ωAIδA) + δ(ωAIdA)], (6.61)
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with summation over a basis in the algebra and where

IδA ≡
∫
E′n

(δ′α′) ∧ ω′Ā

rn−2
12

, IdA ≡
∫
E′n

(d′α′) ∧ ω′Ā

rn−2
12

. (6.62)

r12 is defined by r2
12 = (x1 − x′1)2 + ... + (xn − x′n)2 in terms of Cartesian

coordinates.

It proves convenient for performing differentiations to replace ωi, ωA and
ωĀ with dxi, dxA and dxĀ. If the results obtained are invariants, one can
re-express the results in terms of arbitrary bases.

We proceed again via the uniqueness theorem, as in the vector calculus,
with specification now of dα, δα and that α goes sufficiently fast at ∞.
vanishing of α at infinity. Because of the annulment of dd and δδ, the proof
reduces to showing that δd(dxAIδA) and dδ(dxAIdA) respectively yield δα and
dα, up to the factor at the front in (6.61). Since the treatment of both terms
is the same, we shall carry them in parallel, as in(

δ
d

)
α→

(
δd
dδ

)
dxAI

(
δ
d

)
A = ∂∂dxAI

(
δ
d

)
A −

(
dδ
δd

)
dxAI

(
δ
d

)
A . (6.63)

In the first term on the right hand side of (6.63), we move ∂∂ to the right of
dxA, insert it inside the integral with primed variables, multiply by− 1

(n−2)Sn−1

and treat the integrand as a distribution. We easily obtain that the first term
yields

(
δα
dα

)
.

For the last term in (6.63), we have

(
dδ
δd

)
dxAI

(
δ
d

)
A =

 d
[
dxi · dxA ∂I

δ
A

∂xi

]
δ
[
(ηdxA) ∧ dxi ∂I

d
A

∂xi

]  . (6.64)

For the first line in (6.64), we have used that dhu = ∂
∂xh

in Cartesian coordi-
nates, and that δu = dxh · dhu. For the development of the second line, we
have used the Leibniz rule.

We use the same rule to also transform the first line in (6.64),

d

(
dxi · dxA∂I

δ
A

∂xi

)
= [η(dxi · dxA)] ∧ dxl ∂

2IδA
∂xl∂xi

= (dxA · dxi) ∧ dxl ∂
2IδA

∂xl∂xi
.

(6.65)
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For the second line, we get

δ

[
(ηdxA) ∧ dxi∂I

d
A

∂xi

]
= dxl ·

[
∂2IdA
∂xl∂xi

(ηdxA) ∧ dxi
]
. (6.66)

We shall use here that

dxl[(ηdxA) ∧ dxi] = −η[η(dxA ∧ dxi)] · dxl = (dxA ∧ dxi) · dxl, (6.67)

thus obtaining

δ

[
(ηdxA) ∧ dxi∂I

d
A

∂xi

]
= (dxA ∧ dxi) · dxl ∂

2IdA
∂xl∂xi

. (6.68)

Getting (6.65) and (6.66) into (6.64), we obtain(
dδ
δd

)
dxAI

(
δ
d

)
A =

[
dxA( ·∧)dx

i
]

( ∧· )dx
l

∫
E′n

∂2

∂x′i∂x′l
1

rn−2
12

(
δ′α′

d′α′

)
∧ dx′Ā.

(6.69)
Integration by parts with respect to x′i yields two terms. The total dif-

ferential term is[
dxA( ·∧)dx

i
]

( ∧· )dx
l

∫
E′n

∂

∂x′i

[(
∂

∂x′l
1

rn−2
12

)(
δ′α′

d′α′

)
∧ dx′Ā

]
. (6.70)

Application of Stokes theorem yields[
dxA( ·∧)dx

i
]

( ∧· )dx
l

∫
∂E′n

(
∂

∂x′l
1

rn−2
12

){
dx′i ·

[(
δ′α′

d′α′

)
∧ dx′Ā

]}
, (6.71)

where we have indulged in the use of parentheses for greater clarity. This
term is null if the differentiations of α go sufficiently fast to zero at infinity.

The other term resulting from the integration by parts is

−
[
dxA( ·∧)dx

i
]

( ∧· )dx
l

∫
E′n

(
∂

∂x′l
1

rn−2
12

)
∂

∂x′i

((
δ′α′

d′α′

)
∧ dx′Ā

)
. (6.72)

This is zero because of cancellations that take place in groups of three dif-
ferent indices, as shown in the next subsection.

In terms of Cartesian bases, we have, on the top line of the left hand side
of (6.63)

dxA
∫
E′n

(δ′α′) ∧ dx′Ā

rn−2
12

. (6.73)
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It is preceded by invariant operators, which we may ignore for present pur-
poses. We move dxA inside the integral, where we let (δ′α′)A be the notation
for the coefficients of δ′α′. We thus have, for that first term,∫

E′n

dxA ∧ [(δ′α′)Adx
′A] ∧ dx′Ā

rn−2
12

. (6.74)

The numerator can be further written as (δ′α′)Adx
Az′. It is clear that z and

(δ′α′)Adx
′A are invariants, but not immediately clear that (δ′α′)Adx

A also is
so. Whether we have the basis dxA or dx′A as a factor is immaterial. since
the invariance of (δ′α′)Adx

′A can be seen as following from the matching of
the transformations of (δ′α′)A and dx′A each in accordance with its type of
covariance. The same matching applies if we replace ω′A with dxA, since dx′A

and dxA transform in unison.
We have shown that (6.61)-(6.62) constitutes the decomposition of α into

closed and co-closed differential forms. It solves the problem of integrating
the system dα = µ, δα = ν, for given µ and ν, and with the stated boundary
condition

6.5.3 Identical vanishing of some integrals

As we are about to show, expressions (6.72) cancel identically (Notice that
(6.71) cancels at infinity for fast vanishing; identical vanishing is not needed).

Consider the first line in (6.72). Let α be of grade h ≥ 2 (If h were one,
the dot product of dxA with dxi would be zero). Let p and q be a specific
pair of indices in a given term in α, i.e. in its projection a′pqC ,pq dx

A upon
some specific basis element dxA. Such a projection can be written as

(a′pqCdx
′p ∧ dx′q ∧ dx′C ,

where dx′A is a unit monomial differential 1−form (there is no sum over
repeated indices. We could also have chosen to write the same term as

(a′qpCdx
′q ∧ dx′p ∧ dx′C ,

with a′qpC = −a′pqC . Clearly, dx′C is uniquely determined if it is not to contain
dxp and dxq. We then have

δ′(a′pqCdx
′p ∧ dx′q ∧ dx′C) = a′pqC ,p dx

′q ∧ dx′C − apqC ,q dx′p ∧ dx′C . (6.75)
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The two terms on the right are two different differential 2−forms. They
enter two different integrals, corresponding to dx′q ∧ dx′C and dx′p ∧ dx′C
components of δ′α′. To avoid confusion, we shall refer to the basis elements
in the integrals as dx′B since they are (h−1)−forms, unlike the dx′A of (6.75),
which are differential h−forms

When taking the first term of (6.75) with i = p into the top line of (6.72),
the factor at the front of the integral is

−(dxB · dxp) ∧ dxl.

But this factor is zero since dxB is dxq ∧ dxC , which does not contain dxP as
a factor. Hence, for the first term, we need only consider i = q. By the same
argument, we need only consider i = q for the second term in (6.75). Upon
multiplying the dx′B’s by pertinent dx′B’s, we shall obtain the combination

(a′pqC ,pq−a′pqC ,qp )z′

as a factor inside the integral for the first line of (6.72). We could make this
statement because the factor outside also is the same one for both terms:
(dxq ∧ dxC) · dxq and (dxp ∧ dxC) · dxp are equal. The contributions arising
from the two terms on the right hand side of (6.75) thus cancel each other
out. We would proceed similarly with any other pair of indices, among them
those containing either p or q. The annulment of the top line of (6.72) has
been proved.

In order to prove the cancellation of the second line in (6.72), the following
considerations will be needed. A given dxA determines its corresponding dx′Ā,
and vice versa. It follows then that only the term proportional to dx′A in
d′α′ exterior multiplies dx′Ā, which is of the same grade as d′α′, i.e. h + 1.
Hence dxA ∧ dxi is of grade 3 or greater for h > 0. If dxA ∧ dxi is not to be
null, dxi cannot be in dxA. Hence, dx′Ā contains dxi as a factor.

Let (p, q, r) be a triple of three different indices in dxA ∧ dxi. When i is
p or q or r, the respective pairs (q, r), (r, p) and (p, q) are in dxA. We may
thus write

dx′A = dx′C ∧ dx′q ∧ dx′r, dx′Ā = dx′p ∧ dx′B. (6.76)

The coefficient of dx′A in d′α′ will be the sum of three terms, one of which is

(a′Cr,q−a′Cq,r )dx′q ∧ dx′C ∧ dx′r, (6.77)
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and the other two are cyclic permutations. We partial-differentiate (6.77)
with respect to dx′p and multiply by dx′p ∧ dx′B on the right. We proceed
similarly with i = q and i = r, and add all these contributions. We thus get

(a′Cr,qp−a′Cq,rp +a′Cp,rq−a′Cr,pq +a′Cq,pr−a′Cp,qr )z′. (6.78)

By virtue of equality of second partial derivatives, terms first, second and
third inside the parenthesis cancel with terms fourth, fifth and sixth. To
complete the proof, we follow the same process with another dx′C and the
same triple (p, q, r) until we exhaust all the options. We then proceed to
choose another triple and repeat the same process until we are done with all
the terms, which completes the proof of identical vanishing of the second term
arising from one of the two integrations by parts of the previous subsection.

6.6 Hodge’s Theorems

The “beyond” in the title of this chapter responds to the fact that we shall
be doing much more than reproducing Hodge’s theorem. As is the case with
Helmholtz theorem, we are able to specify in terms of integrals what the
different terms are.

We shall later embed Riemannian spaces Rn in Euclidean spaces EN ,
thus becoming n− surfaces. As an intermediate step, we shall apply the
traditional Helmholtz approach to regions of Euclidean spaces, i.e. Rn’s ab
initio embedded in En. The harmonic form —which is of the essence in
Hodge’s theorem— emerges from the Helmholtz process in the new venues.

6.6.1 Transition from Helmholtz to Hodge

Though visualization is not essential to follow the argument, it helps for
staying focused. For that reason, we shall argue in 3-D Euclidean space. It
does not interfere with the nature of the argument.

On a region R of E3, including the boundary, define a differential 1−form
or 2−form α. Let A denote any continuously differentiable prolongation of
α that vanish sufficiently fast at infinity. On R, we have dA = dα and
δA = δα. We can apply Helmholtz theorem to the differential forms A. In
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order to minimize clutter, we write it in the form

−4πA = d...

∫
R′

δ′A′...

r12

+ δ

∫
R′
...
d′A′...

r12

+

+d...

∫
E′3−R′

δ′A′...

r12

+ δ...

∫
E′R−R′

d′A′...

r12

, (6.79)

where r12 = [(x − x′)2 + (y − y′)2 + (z − z′)2]1/2. We shall keep track of the
fact, at this point obvious, that in the first two integrals on the right, r′ is
in R′. It is outside R′ in the other two integrals, which will depend on the
prolongation. By representing those terms simply as F , we have

−4πA = d...

∫
R′

δ′α′...

r
+ δ...

∫
R′

d′α′...

r
+ F . (6.80)

Since these equations yield A everywhere in E3 (i.e. r not limited to R), they
yield in particular what A and F are in R . We can thus write

−4πα = d...

∫
R′

δ′α′...

r
+ δ...

∫
R′

d′α′...

r
+ F , (6.81)

F not having changed except that F in (6.81) refers only to what it is in
R but it remains a sum of integrals in E ′3 − R. The prolongations will be
determined as different solutions of a differential system to be obtained as
follows.

By following the same process as in Helmholtz theorem, we obtain, in
particular,

−4πdα = dδ...

∫
R′

d′α′...

r
+ dF , (6.82)

and similarly for −4πδα (just exchange d and δ).
Now, the first term on the right hand side of (6.82) will not become

simply −4πdα as was the case in the previous section. It will yield two
terms. One of them is −4πdα, and the other one is made to cancel with
dF , thus determining a differential equation to be satisfied by F . To this
we have to add another differential equation arising from application of δ to
(6.81). Together they determine the differential system to be determined by
F . Thus −4πα will be given by the three term decomposition (6.81). Notice
that, in the process, we avoid integrating over E ′3 − R′ and instead solving
a differential system in R, since the left hand side and the first term on the
right hand side of (6.82) pertain to α.
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From now one, we shall make part of the theorems that the prolongations
are solutions of a certain differential systems, later to be made explicit.

6.6.2 Hodge theorem in regions of En

Let α be a differential k−form satisfying the equations dα = µ and δα = ν,
and given at the boundary of a region of En. We proceed to integrate this
system. (6.81) now reads

−(n− 2)Sn−1α = d

[∫
R′

δ′α′...

r12

]
+ δ

[∫
R′

d′α′...

r12

]
+ F , (6.83)

where R is a region of Euclidean space that contains the origin and where
r12 is the magnitude of the Euclidean distance between hypothetical points
of components (x, y, ...u, v).and (x′, y′, ...u′, v′), all the coordinates chosen
as Cartesian to simplify visualization. We said hypothetical because the
interpretation as distance only makes sense when we superimpose En and
E ′n.

When we apply either d or δ to (6.83), we shall use, as before, dδ+
δd = ∂∂, with one of the terms on the left moved to the right (dδ = ...,
δd = ... respectively). By developing the ∂∂ term, it becomes the same as
term on the right (i.e dα or δα). It will cancel with the term on the left.
The terms that vanished identically also vanish now, precisely because this
is an identical vanishing. We are thus left with the total differential terms.
If apply Stokes theorem, as before. these terms no longer disappear at the
boundary. Hence, we are left with the two equations

[
dxA( ·∧)dx

i
]

( ∧· )dx
l

∫
R′

(
∂ 1
rn−2
12

∂x′l

)
dx′i ·

[(
δ′α′

d′α′

)
∧ dx′Ā

]
+

(
d
δ

)
F = 0

(6.84)
(Refer to (6.81)). Hence, the solution to Helmholtz problem is given by the
pair of equations (6.83)-(6.84).

We shall now show that F is harmonic, i.e. (dδ + δd)F = 0..We shall
apply δ and d to the first and second lines of (6.94). Start by rewriting the
first terms in (6.93) in the form, (6.80), they took before applying Stoke’s
theorem. Upon applying the δ operator to the first line, we have, for δdF ,

dxh · [(dxA · dxi) ∧ dxl]
∫
R′

∂2

∂x′h∂x′i

[(
∂

∂x′l
1

rn−2
12

)(
δ′α′

d′α′

)
∧ dx′Ā

]
. (6.85)
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Since this term happens to vanish, the computation will take place up to the
factor −1, provided it is common to all terms in a development into explicit
terms. We do so because (6.85) will be shown to vanish identically.

For dxh · [(dxA · dxi) ∧ dxl] to be different from zero, h and i must be
different and contained in A. Since dxl is not in dxA, the product dxh · dxl is
zero. Hence

dxh · [(dxA · dxi) ∧ dxl] = [dxh · (dxA · dxi)] ∧ dxl]. (6.86)

We can always write dxA as

dxh ∧ dxj ∧ dxC ∧ dxi. (6.87)

This is antisymmetric in the pair (i, h), which combines with the symmetry
inside the integral to annul this term. Notice that we did not have to assign
specific values for (i, h), but we had to “go inside” dxA. We mention this for
contrast with the contents for the next paragraph. We have proved so far
that δdF = 0.

We rewrite the left hand side of (6.84) as in (6.70) and proceed to apply
d to it. We shall now have

dxh ∧ [(dxA ∧ dxi) · dxl]
∫
R′

∂2

∂x′h∂x′i

[(
∂

∂x′l
1

rn−2
12

)
d′α′ ∧ dx′Ā

]
. (6.88)

It is clear that, when l takes a value different from the value taken by i,
we again have cancellation due to the same combination of antisymmetry-
symmetry as before. But the terms dxi ·dxl would seem to interfere with the
argument, but it does not. We simply have to be more specific than before
with the groups of terms that we put together. We put together only terms
where we have dxr ∧ dxs arising from (h = r, i = s) and (h = s, i = r).
When the running index l takes the values r or s, the resulting factor at the
front of the integral will belong to a different group. We have thus shown
that (6.88) cancels out and, therefore, dδF = 0. To be precise, we have not
only proved that F is harmonic, but that it is “hyper-harmonic”, meaning
precisely that: δdF = 0 and dδF = 0.

6.6.3 Hodge’s theorem for hypersurfaces of EN

A manifold embedded in a Euclidean space of the same dimension will be
called a region thereof. A hypersurface is a manifold of dimension n embed-
ded in a Euclidean space EN where N > n. The treatment here is the same
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as in subsection 6.1, the hypersurface playing the role of the region. The
only issue that we need to deal with is a practical one having to do with the
experience of readers. Helmholtz magnificent theorem belongs to an epoch
where vector (and tensor) fields often took the place of differential forms.
This can prompt false ideas as we now explain.

Let v be a vector field v ≡ aλ(u, v)âλ (λ = 1, 2) on a surface xi(u, v)
(i = 1, 2, 3) embedded in E3, the frame field âλ being orthonormal. It can be
tangent or not tangent. By default, the vector field is zero over the remainder
of E3. In its present form , Helmholtz theorem would not work for this field
since the volume integrals over E3 would be zero. This is a spurious implica-
tion because the theorem should be about algebras of differential forms, not
tangent spaces.

Let µ be the differential 1−form aλ(u, v)ω̂λ, the basis ω̂λ being dual to
the constant orthonormal basis field aλ. This duality yields aλ = aλ. No
specific curve is involved in the definition of µ, which is a function of curves,
function determined by its coefficients aλ(u, v) The specification of a vector
field on a surface, v, on the other hand needs to make reference to a surface
for its definition. And yet the components of dµ and δµ (which respectively
are a 2−form and a 0−form) enter non-null volume integrals, which pertain
to 3−forms . The fact that most components (in the algebra) of an k−form
are zero is totally irrelevant. The Helmholtz theorem for, say, a differential
1−form µ can be formulated in any sufficiently high dimensional Euclidean
space regardless of whether the “associated” vector field v is zero outside
some surface.

Similarly, Helmholtz theorem for a differential n−form in EN involves
the integration of differential N−forms, built upon the interior differential
(n − 1)−form and the exterior differential (n + 1)−form. In considering
simple examples (say a plane in 3−space), one can be misled or confused if
one does not take into account the role of 1/r, or else we might be obtaining
an indefinite integral. Assume finite

∫
λ(x, y)dx ∧ dy when integrating over

the xy plane. The integral
∫
λ(x, y)dx∧dy∧dz would be divergent, but need

not be so if there is some factor that goes to zero sufficiently fast at infinity
of z and −z.
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6.6.4 Helmholtz-Hodge’s and Hodge’s theorem for Rie-
mannian spaces

We shall consider a Helmholtz-Hodge extension of Hodge’s theorem (i.e. a
theorem of integration) and the standard Hodge theorem, which is a conse-
quence of the former.

Consider now a differentiable manifold Rn endowed with a Euclidean met-
ric. By the Schläfli-Janet-Cartan theorem [1],[2],[3], it can be embedded in
a Euclidean space of dimension N = n(n+ 1)/2. Hence, a Helmholtz-Hodge
theorem follows for orientable Riemannian manifolds that satisfy the condi-
tions for application of Stokes theorem by viewing them as hypersurfaces in
Euclidean spaces. At this point in our argument, the positive definiteness of
the metric is required, or else we would have to find a replacement for the
Laplacians considered in previous sections. The result is local, meaning non
global, remark made in case the term local might send some physicists in a
different direction. For clarity, the evaluation of the Laplacian now satisfies

1 =
1

(N − 2)SN−1

∫
EN

∂∂
1

rN−2
z, (6.89)

where r is the radial coordinate in N−dimensional space. Needless to say
that it also applies to regions and hypersurfaces of EN that contain the
origin. As a consequence of the results in the previous subsections, we have
the following.

Helmholtz-Hodge’s theorem:
Hodge’s theorem is constituted by Eqs. (6.90)-(6.91): For differential

k−forms in Riemannian spaces Rn

−(N − 2)SN−1α = d

[
ωA
∫
R′n

(δ′α′) ∧ ω′Ā

rN−2
12

]
+ δ

[
ωA
∫
R′n

(d′α′) ∧ ω′Ā

rN−2
12

]
+ F ,

(6.90)

(
d
δ

)
F = −

[
dxA( ·∧)dx

i
]

( ∧· )dx
l

∫
R′n

(
∂ 1
rn−2
12

∂x′l

)
dx′i ·

[(
δ′α′

d′α′

)
∧ dx′Ā

]
,

(6.91)
with r12 being defined in any Euclidean space of dimension N ≥ n(n+ 1)/2
where we consider Rn to be embedded.
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As previously discussed, r12 represents a chord. We insist once more that
ω′Ā is determined by the specific term in δ′α′ and d′α′ that it multiplies. F
is undetermined by solutions of the system δα = 0, dα = 0. So is, therefore
α.

Hodge’s theorem, as opposed to Helmholtz-Hodge theorem, is about de-
composition. Hence, once again, uniqueness refers to something different
from the uniqueness in the theorem of subsection (3.2), which refers to a
differential system.

One might be momentarily tempted to now apply (6.90) to (6.91). We
would get an identity, F = F , by virtue of the orthogonality of the subspace
of the harmonic differential forms to the subspaces of closed and co-closed
differential forms.

Hodge’s theorem:
Any differential k−form, whether of homogeneous grade or not, can be

uniquely decomposed into closed, co-closed and hyper-harmonic terms. For
differential k−forms, the theorem is an immediate consequence of (6.100).
For differential forms which are not of homogeneous grade, the theorem also
applies because one only needs to add the decompositions of the theorem
for the different homogeneous k−forms that constitute the inhomogeneous
differential form.

This is obviously contained in Helmholtz-Hodge’s theorem.
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