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Abstract.

The progress of mathematics makes it sometimes fashionable to describe
physical theory in more modern forms, not always deeper or more under-
standable. Of particular interest in this regard is relativistic quantum me-
chanics. Modern versions of it, like through the use of geometric calculus
(mainly the work of Hestenes), may be more appealing than the original ver-
sion of Dirac theory, but the physical contents remains virtually unchanged.

Enter the Kähler calculus (KC). Underlied by Clifford algebra of differen-
tial forms —like tangent Clifford algebra underlies the geometric calculus—
it brings about a fresh new view of quantum mechanics. This view arises,
almost without effort, from the equation which is in KC what the Dirac
equation is in traditional quantum mechanics. One does not need to first hy-
pothesize foundations of quantum mechanics, which makes the Dirac version
unintelligible even when one is adept at computing with it. Many foundations
come in the wash from the mathematics and very little additional input. Not
only Kähler theory reproduces the main Dirac-related results more elegantly,
but does so far more profoundly and shows the way to further developments.
In this paper, we shall deal with differences between the Dirac and Kähler
versions and, to a lesser extent, between Kähler and Hestenes.

We limit ourselves to scalar-valued differential forms. That is all that one
needs to supersede the Dirac and geometric calculus versions of relativistic
quantum mechanics. Hence, we shall give just a very brief inkling of KC
with post-scalar-valued differential forms. Non-scalar-valuedness is needed
for a unification of quantum and classical physics since the curvature and
Einstein tensors are inadequate representations of what by their very nature
are bivector-valued differential 2-forms and vector-valued differential 3-forms
respectively.

We shall be specific about gems, both mathematical and (mainly) physi-
cal, contained in this calculus. We shall also explain the mathematical phi-
losophy of Kähler on a variety of issues (vector fields, differential forms, Lie

1



differentiation, unification of derivatives, product of tangent algebras with
algebra of integrands). Not surprisingly, his philosophy is the same as É.
Cartan’s. We shall also illustrate how some of the results that one achieves
with KC supersedes the less sophisticated results which one finds deep into
very specialized books on group theory, harmonic function theory, complex
variable theory, cohomology theory, relativistic quantum mechanics and even
particle theory.

1 Introduction

This paper is being written in response to the unawareness of what the
Kähler calculus (KC) has to offer, specially for the advancement of the physics
paradigms. In section 2, we speak of this offer in connection with quantum
physics, and, in section 3 in connection with physics unification, though only
in relation to great overlooked ideas of the 20th century that appear to come
together under the KC.

It is a calculus where deep results, both in physics (Section 4) and math-
ematics (Section 5) follow from just a few definitions. It has not received
the attention it deserves. It may be due to the language barrier (papers in
German), or to a style that is no longer in use, or, in quantum physics, to
misinterpretations, as shown in section 6. In section 7, we shall compare the
Kähler calculus with the geometric calculus. In section 8, we explain the
mathematical philosophy of Kähler, as it can help understand his work. In
section 9, we enumerate a few specialized mathematics and physics books
some of whose results are matched or superseded by relatively short proofs
that do not require previous knowledge of the subject matter of those books.

2 Brief highlight of Kähler’s Quantum Me-

chanics, meant for quantum physicists

This section is a very brief description of Kähler’s Quantum Mechanics, which
is a virtual concomitant of the KC. A more detailed description is to be found
in Sec. 4.

Assume that you knew KC but not physics and that you asked yourself
to solve equations of the form

∂u = au, (1)
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where we do not need to know details other than ∂ is some Dirac-type deriva-
tive operator, that a and u are differential forms (respectively input and out-
put) and that their juxtaposition means their Clifford product. Solutions u
may be members of the Clifford algebra which are not necessarily members
of ideals in this algebra. Assume further that, to start with, you choose a to
be of the type m+eA where A is a differential 1-form and where m and e are
constants. Seek solutions in ideals uε± defined by idempotents ε± related to
time translation symmetry, ε± = 1

2
(1 ∓ idt). You can absorb dt in ε±, and,

in particular the dt’s in ∂u and au in any of the two equations

∂(uε±) = (m+ eA)(uε±). (2)

The imaginary factor i has been ignored to avoid distractions, but should be
there. clean this equation to, mainly, absorb dt and to leave just ∂(uε±)/∂dt
on the left. With little effort, you get the Pauli–Dirac equation as a first ap-
proximation, and the Foldy-Wouthuysen transformation in the immediately
following second approximation.

Assume on the other hand that, independently of those results, you spe-
cialize (2.2) to A = −(edt/r) and solve the equation. You get the fine
structure of the hydrogen atom. In neither of these two exercises there is
a need for Pauli or Dirac matrices. Nowhere appears the need for negative
energy solutions, since what makes the positron a positron is its pertaining
to the left ideal defined by ε+, not negative energies. Spinors and Hilbert
spaces are emerging concepts, as they come in the wash of solving equation
(1). Operator theory is not necessary for development of quantum mechan-
ics, as these operators come embedded in the computations, each in its own
idiosyncratic way. The concept of probability amplitude also would be an
emerging concept, rather than one belonging to the foundations of quantum
physics. The reason is that, in the basic Eq. (1), there are not even particles.
This has to do with the conservation law, which has to do with two densities
at the same time. This has to be seen as pertaining to a magnitude with two
opposite signs. clearly this must be charged, as confirmed by results as those
of which we have spoken above. This deserves more detailed explanation be-
cause it touches very explicitly the Copenhagen interpretation of Quantum
Mechanics

A conservation law of a scalar-valued magnitude is usually given the form

∂ρ

∂t
+ div j =0. (3)
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In quantum mechanics, ρ and j are built from the wave function (non-
relativistic) or the spinor solution of a Dirac equation. In the KC, we can
always write

u = +u ε+ + −u ε−. (4)

The conservation law obtained from “basic KC theory” (see chapter 6 when
posted in this web site) takes the form

∂ρ1
∂t

+ div j1 +
∂ρ2
∂t

+ div j2 =0, (5)

where becomes ρ1 and ρ2 are at each and every point non-negative and non-
positive. Of course, if a system is such that +u is zero, you only have “field
of negative charge”. The probability amplitude is what the negative charge
amplitude −u looks like.

Probability amplitude thus is a derived concept. It cannot be taken as
a basic tenet for an interpretation of quantum mechanics, specially since it
was adopted in the conceptual fog that accompanied the birth of quantum
mechanics.

3 A new paradigm that the Kähler calculus

could make possible

There is synergy between the KC and great overlooked ideas in mathematics
and physics in the 20th century, as well as new experimental evidence coming
from microelectronics and which contradicts the limited and retrospectively
inadequate experimental evidence on which the present theoretical paradigm
was built. Imagine that one could put together those ideas in a way consistent
with a more refined experimental evidence. That may be possible through
the Kähler calculus. You be the judge.

During my first experience as a graduate student, the business of negative
energy solutions and an infinite sea of such states made me loose interest in
working at the cutting age of physics. I even left graduate school. Years
later, I did return to a graduate program. Getting a Ph.D. is much easier
when you have a passion for some topic in which there is not much compe-
tition, you have time and you have already published in refereed journals.
That happened to me. I was a free spirit not constrained by what the Na-
tional Science Foundation funded. It is a long story. But the success that
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I have had in disparate non-main stream field of physics was made possible
by job opportunities that no longer exist, and by the support in different
ways that Drs. Douglas and Marsha Torr provided me over decades. Thanks
to that, I saw new opportunities for superseding physics in more than one
area. Eventually, all that came together to form a picture of which I shall
try here to give a glimpse. Unfortunately, the world of physics nowadays is
a far more hostile environment for free spirits, which I have been. It is thus
important to make public new profound scenarios like the one I uncovered,
largely because of the right choice of mathematical tools.

Physicists have made great strides with the type of quantum physics with
which I had problems. I do not regret this progress. After all, it does not
hurt to have the enormous experimental evidence that development of the
Dirac theory has brought. But one has to reinterpret it from the perspective
of the far move relevant and reliable experimental evidence brought about
by the microelectronics revolution. Like the Kähler calculus, it contradicts
main tenets of the Bohr-Dirac-Feynman philosophy of quantum physics.

Let me now proceed with some of the great ideas announced in the title
of this section, because they are precursors of a new vision of physics, whose
developments have barely started.

3.1 Julian Schwinger and source theory

Schwinger’s source theory may be seen as a proxy for what the Kähler calcu-
lus will become when used to address the same issues. But it has received far
less attention than it deserves. Source theory is difficult to define. Its major
attractiveness is that the results of quantum electrodynamics are reproduced
without the irrelevance of divergent quantities and renormalizations”. It
emphasizes spacetime, but it is not operator field theory. Of course oper-
ators will nevertheless play some role; they also do in the KC, but not as
fundamentally as in quantum field theory.

Like S-matrix theory, it also has phenomenological emphasis, which we
do not view with enthusiasm. But the phenomenology might look less so
when approached with the more formal perspective that the Kähler calculus
provides. For instance, what we call the dominant energy-approximation,
is not even conceived as an approximation in Dirac’s equation where mass
is an essential ingredient; it is not so in Kähler’s theory, where it comes in
because of phenomenology, even if very basic one. The day one shall know
enough to actually compute the mass of the electron, we shall be justified in
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considering masses as pertaining to a higher category than phenomenology.
Schwinger points out that

“... in general, particles must be created in order to study
them, since most of them are unstable. In a general sense this is
also true of high-energy stable particles, which must be created
in that situation by some device, i.e. an accelerator. One can
regard all such creation acts as collisions, in which the necessary
properties are transferred from other particles to the one of inter-
est... The other particles in the collision appear only to supply
these attributes. They are, in an abstract sense, the source of
the particle in question... We try to represent this abstraction of
realistic processes numerically...”

And further down, he writes:

“Unstable particles eventually decay and the decay process
is a detection device. More generally, any detection device can
be regarded as removing or annihilating the particle. Thus the
source concept can again be used as an abstraction ... with the
source acting negatively, as a sink.”

What is the abstraction? Speaking of the creation of a particle with
specified properties in a collision, Schwinger has this to say:

“ ...the source concept is the abstraction of all possible dy-
namical mechanisms whereby the particular particle can be pro-
duced.”

A shallow immersion in source theory is all that one needs to realize that it
is a calculus of integrals. In the KC, these are evaluations (read integrations)
of differential forms. It has the flavor of the KC, not of operator field theory.
In the second page where equations are given in his first book on source
theory, he states:

“To specify a weak source , we consider its effectiveness sin
crating a particle with momentum p, in the small range (dp).An
invariant measure of momentum space is

dωp =
(dp)

(2π)3
1

2p0,
, p0 = +

√
p2 +m2.
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We now define the source K in terms of the creation and annihi-
lation probability amplitudes

〈1p | 0−〉K =
√
dωpiK(p),

〈0+ | 1p〉K =
√
dωpiK(−p),

which conveys the idea that the source liberates or absorbs mo-
mentum p in the respective processes.”

Of course, this is not Kähler notation but certainly illustrates the role
that integrands play in source theory, as in the KC. Also significant is his
principle of unity of the source, because it embodies a postulate with the same
flavor as the Kähler equation in his general form, i.e. before we introduce a
mass term (or any other specific term) in the input a. We shall come back to
this. Let us say what Schwinger says in this regards. He considers what he
calls a complete situation, namely one where particles are created by sources
K2, propagate in space and time and are detected by K1. After a small
computation yielding

〈0+ | 0−〉K ∼= 1 +O(K1)2 +O(K1)2

+

∫
dωp

∫
(dx)(dx′)iK1(x)eip(x−x

′)iK2(x
′),

he states:

”We regard K1(x) and K2(x) as manifestations of the same
physical mechanism, that is, they are the values of one general
source in different spacetime regions. Therefore the only possible
combination that can occur is the total source

K = K1 +K2.

This is a fundamental postulate, the principle of the unity of the
source, which embodies the idea of the uniformity of nature.”

This disquisition by Schwinger has the flavor of what the general Kähler
equation is. Mass can only enter in applications. The Kähler equation that
one should dream of has to be one where mass does not enter, since it must
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be valid anywhere. But practical calculations should not take place with
that dream equation, certainly not if it is not even known For practical
calculations, we choose an input, like when we use the dominant energy
approximation. We shall hear a lot about this concept in the KC because
this is what relativistic quantum mechanics is about (See chapter 4 in the
web site of the Alterman event). Schwinger toys with the same idea, but at
the level of interactions, rather than at a level of detail evolution of a system.

3.2 Carver Mead and the concepts of electrons and
photons

Let us next deal with the conceptual revolution subjacent in the explosion of
microelectronics knowledge of the last half a century. Carver Mead is emeri-
tus professor at Caltech, main brain behind this microelectronics revolution.
He is the 1999 Lemelson-MIT Prize for Invention and Innovation. But that
is only a very small description of his many credits. Please google his name.
He has in common with Schwinger that they are against the paradigm’s
description of the quantum world in terms of point particles and operators.

For Mead, an electron has the property of adapting to its environment,
be it a hydrogen atom or a wire. He claims that experiments are regularly
performed with neutrons that are one foot across. In his laboratory, he
can make electrons that are ten feet long. He makes statements like ”The
electron ... is the thing that is wiggling, and the wave is the electron”. His
use of the term wave is not the standard one of classical electrodynamics (He
would use the term non-coherent rather than classical). This characterization
of electrons as waves is crucial in order not to misunderstand him in what
follows.

Asked what should we think of a photon, Mead had this to say: ”John
Cramer at the University of Washington was one of the first to describe it as
a transaction between two atoms”. Then he was asked: ”So that transaction
is itself a wave?” Response: ”The field that describes that transaction is a
wave, that is right”.

This vision of microphysics is totally at odds with present Heisenberg-
Dirac-Feynman type formulation of quantum physics, and of cutting edge
theories based on auxiliary bundles not directly related to the tangent bun-
dle. It is consistent with the view that we have spoused at the end of the
previous subsection. There is not such a think as point particles. These
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are regions of space where the “background field” presents some concentra-
tions of some sort, with some well defined algebraic (member of an ideal) or
topologic-geometric invariant. To think of a photon as some kind of particle
is stretching things too far. Things looked that way a century ago, when
experimental technique was so primitive, as Mead would argue. And who
could speak more authoritatively than he did about situations in an elec-
tronics laboratory? The photon is the field that is being transacted There
will be some region —fuzzy or not, changing or not, it does not matter—
where the transaction is taking place, not just a point of impact?

Those auxiliary bundles are directly tied to the point particle approach
of modern physics since you cannot do tangent bundle physics, i.e. regular
differential geometry, with them. They are a back road to the ideal of having
theoretical physics be differential geometry. After all, is that not what Yang-
Mills theory seeks to do? The problem is: what is behind those auxiliary
bundles to which Yang-Mills theory resorts? Is there a need for them, or it
is simply a matter of using them because one does not know better?. One
certainly cannot do better if one does not first imagine what things could
look like.

KC for quantum physics is in tune with a hypothetical geometrization of
classical physics directly related to the tangent bundle. So it provides the
connection between differential geometry and quantum physics. Why is that
so?

From the equations of structure of a differential manifold, only the torsion
is available for the electromagnetic field. In Riemann-plus-torsion geometry,
one cannot match a two-index quantity (here electromagnetic field), with
one which has three indices (here torsion). But the matching is possible in
Finslerian structures. One can match the two differential form indices of the
torsion with those of the electromagnetic field. Hence the 4-potential must
be viewed as a differential 1-form, not as a 4-vector. This advocates Kähler’s
quantum mechanics, not Dirac’s.

We now start to show the path towards the connection between classical
and quantum physics.
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3.3 É. Cartan and the concept of differential form in
electrodynamics

The point just made about the mathematical language for physics is so im-
portant that we reinforce the argument for the KC calculus in quantum
physics with an overlooked study that Cartan did of this topic in his second
paper on the theory of affine connections. After representing the electro-
magnetic quantities in terms of differential forms, he argued that Maxwell’s
equations should not be viewed as relations at each point of the components
of the quantities that enter those equations, i.e. the differential forms. They
should be viewed as relating integrals, which is equivalent to viewing them as
relations of integrands, not of antisymmetric multilinear functions of vectors.
Does this not have the flavor of sources (extended objects rather than points)
and of the Kähler calculus?

With the quotation that follows, Cartan then begins a discussion electro-
magnetic energy-momentum, where vector-valuedness becomes of the essence:

”But Maxwell’s equations (8) do not provide all the laws of
electromagnetism.

One knows that in Lorentz theory there is an electromagnetic
energy-momentum that is represented by a sliding vector...”

At that point Cartan starts to use differential forms that are not scalar-
valued.

Since classical physics requires the use also of non-scalar-valued differ-
ential forms (gravitation theory for sure) and classical physics is what it is
because quantum physics is what it is, a comprehensive KC and concomi-
tant physics will have to be one for non-scalar-valued differential forms, the
essential objects in differential geometry. Kähler did not go with his calculus
beyond simply defining a Dirac type equation for tensor-valued differential
forms. It is not our intention to go into any valuedness other than scalar-
valuedness in this summer school, except in the very last day. And there
are not other applications at this point except first results on unification of
the non-gravitational interactions and the algebraic representation of leptons
and quarks through ideals defined by primitive idempotents, beyond what
Kähler did in this regard. But the right decision as to what type of val-
uedness is required comes from the interplay of Kähler’s quantum physics
with the classical geometrization of the electromagnetic interaction. That
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is where Einstein comes in the picture with his attempt at unification with
teleparallelism (TP). Einstein’s is not the only way. In fact, this author got
into TP not as a postulate but through the study of the Lorentz force and
Finsler geometry. We shall emphasize the Einstein route because his idea
was fabulous and because, in the process, Cartan gets again in the picture.

3.4 Einstein and Cartan on teleparallelism

Einstein postulated teleparallelism, i.e. equality of vectors at a distance, be-
cause there was no equality of vectors at a distance in his general relativity
theory. There was not equality in 1915, year of the birth of general relativity,
because the concept of comparison of vectors at a distance was born with
the Levi-Civita connection in 1917. but Levi-Civita’s is a path-dependent
comparison and does not, therefore, qualify as equality. The practical imple-
mentation of such equality is through the postulate of annulment of the affine
curvature. The Riemannian curvature of a manifold with a metric remains in
place, but only in a metric role, as before 1915, not in a metric role, as after
1917. It is obvious from the Cartan-Einstein correspondence that Cartan
did no understand that. Einstein believed that the right choice of geometry
would bring about the geometrization of electrodynamics, unification with
gravity and possibly an alternative to the quantum physics in the Bohr mold.

Einstein’s failed in his attempt at physical unification with the postulate
of TP. And he did so because he did have only a very vague idea of how
to connect TP with his thesis of what he called logical homogeneity of
differential geometry and theoretical physics, and with his view of particles
as special regions of the field. His postulate, thesis and view were in
the right track, as later developments in differential geometry have shown.
He did not listen at all to Cartan when, on December 3rd 1929, the latter
rightly told him that certain identity used as an equation in physics —–
which happens to be the first Bianchi identities when there is TP— had to
be present in his system of equations. Neither did he pay much attention
when in letter of February 2, 1930, Cartan told him the relation of the Ricci
tensor to the torsion and its derivatives; this is information contained in the
second equation of structure. Cartan was giving Einstein advice consistent
with the thesis of logical homogeneity in almost pure form, which takes the
form: make the equations of structure and Bianchi identities part of you field
equations. But Cartan was not aware of the relation between electromagnetic
field and torsion. The mathematics did not yet exist for understanding this
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relation. It was created precisely by Cartan a few years later with his theory
“of metric-Finsler connections”. We have used the prefix “metric” because
Finslerian connections exist on Riemannian metrics; the Finslerian character
of a geometry resides in the type of fibration of its bundle. Cartan put one
foot in the door for an understanding of Finsler bundles, but it was an ignored
differential topologist by the name of Yeaton H. Clifton —highly praised by
S.S. Chern— who pushed the door wide open. If one is used to the thinking
of É. Cartan i.e. doing geometry in the bundle rather than its sections, the
Finslerian generalization of standard differential geometry is rather straight
forward.

3.5 Yeaton H. Clifton and the geometrization of elec-
trodynamics

Enter Clifton, a rather eccentric mathematician who did not care to publish.
To remove this difficulty, Douglas G. Torr and myself published in his name.
We did so with the title of one of three papers of which he was the major
contributor by far: “Finslerian Structure: the Cartan-Clifton method of the
moving frame”.

An explanation seems in order here. A reviewer of the second of those
papers objected to our having used the name of Clifton in referring to the
method, as if Cartan had been the creator of the method. But this is incor-
rect. The names Serret, Frenet, Demoulin, Ribaucour, Cotton and Darboux
come to my mind as having been associated with moving frames. Cartan
brought the method to new heights with his use in formulating modern dif-
ferential geometry, aside from the fact that he was by far the best known of
the mathematician associated with it. But this use was not viewed as rigor-
ous and a horrible herd of hackers phagocytized it and replaced it with the
present Babel tower of formulations of differential geometry, whose authors
have missed the essential ideas of Cartan, and of the Erlangen program, and
of the theory of integrability of exterior systems, etc. Clifton made the theory
of affine connections rigorous, without loosing any of the flavor in Cartan’s
original work. But not only that. He also rigorously defined Finslerian con-
nections, regardless of whether a metric is defined on it, or whether it is
Riemannian or properly Finslerian. This is why his name should be attached
to the so called Cartan’s theory of moving frames.

Clifton did not quite realize that the equations of the autoparallels of
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Finsler connections contain the Lorentz force, certainly in addition to the
gravitational force. Let us explain. A Finslerian torsion is of the form

R = (Rµ
νλω

µ ∧ ωλ + Sµνlω
ν ∧ ωlν)eµ, (6)

Greek and Latin indices being (0, 1, 2, 3) and (1, 2, 3) respectively. Let us
ignore the S terms. The torsion then looks as if it pertains to the standard
(non-Finslerian) connections with torsions. But they is not quite correct
since neither ω0 nor e0 mean in the Finsler bundles what they mean in the
standard bundles. And here comes the amazing feature. Regardless of what
the connection with torsion is, the Ri

νλ do not contribute to the equation
of the autoparallels; only the R0

νλ do. Furthermore, this equation takes the
form of the equation of motion with Lorentz force with Ω0 playing the role
of F . Of course, the factor q/m does not appear, which is the reason why
some claim that it is not possible to geometrize the equation of motion of
electrodynamics. Where there is a solution, naysayers see a problem. A factor
such as as q/m is compatible in principle with geometry because a particle is
a configuration of a field (Here is Einstein again) with a well defined torsion,
which does not contribute to its own acceleration. Of course, the art of
geometrization has not yet reached the degree of sophistication necessary to
deal with this issue. And, what a coincidence, as Kähler showed charge and
energy are both conserved quantities under time translation symmetry.

3.6 Of Kaluza-Klein space and Cartan-Clifton on Finsler
bundles

Here is an inkling of things to come. Enter again E. Cartan. In 1922, he did
a straightforward computation that shows that the theory of connections is
a theory of just moving frames, not frames and particles in an equal footing.
One can get particles in the equations of structure by making propertime, τ ,
a fifth dimension, not just a concept applicable to curves. That means that
the four-velocity, u, is now outside spacetime, since it is the fifth element
of a basis of vector tangent to the time-space-propertime manifold. dτ thus
is a horizontal differential form dual to u. And it further happens that the
arena of quantum physics is not the subspace (t, xi) but (xi, τ). This is so
because, for example, a hydrogen atom is identical to itself in spite of its
state of inertial motion (that is, in flat spacetime, with constant velocity).
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This is similar to what happens in Finsler geometry where we have

du = de0 = ωi0ei. (7)

There is here not only the information that du equals de0, but also that
the de0 and thus du are horizontal invariants. For those who are not very
knowledgeable in differential geometry suffice to say that, for the standard
spacetime bundle, the horizontal invariants are the ωµ’s. For the Finslerian
spacetime bundle, they are the ωµi and the ωi0 (Seven “translation” differ-
ential forms, like seven is the dimension of the time-space-propertime man-
ifold). This opens the door for the geometrization of quantum physics and
unification with classical physics.

A project for a whole new paradigm lies in front of us. The main ideas
have been supplied by a constellation of geniuses: Kähler, Schwinger, Mead,
Einstein, E. Cartan and Clifton. Is there motivation for such a project? An
increasing number of physicists think that the present paradigm is virtually
exhausted. Others, who spend time in laboratories rather than in offices
of ivory towers would side with Carver Mead, who, in year 2000, opened
the first chapter of his book “Collective Electrodynamics” with the following
statements: “It is my firm belief that the last seven decades of the 20th

century will go down in history as the dark ages of theoretical physics” (now
eight and a half and counting).

4 Gems of the Kähler calculus for mathemat-

ical analysis

Kähler calculus contains important contributions to analysis and to the un-
derstanding of the foundations of certain areas of mathematics. The rich
ensemble of results that he obtained, both in quantum physics and math-
ematics. The components of his tensor-valued differential forms have three
series of indices , two of them of subscripts. This speaks of the subtleties of his
treatment, which, for instance, distinguishes between differential forms and
antisymmetric multilinear functions of vectors fields. His differential forms
are integrands, i.e. functions of r−surfaces. In other words, we we have to
distinguish between antisymmetric multilinear functions of vector fields and
integrands, i.e. functions of r-surfaces. Acting on the first ones, Kähler’s (as
well as Cartan’s) operator d yields covariant derivatives. It yields exterior
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derivatives acting upon the second ones. Because of Cartan’s lesser use of
tensor-calculus-like use of components, this distinction was less explicit in
his work.

Lie differentiation of differential forms is another case in point. His treat-
ment shows that it is a matter of knowing your partial derivatives well. it,
and it helps one to better understand that it is dangerous (I am not saying it
should not be done!) to deal with sums of terms involving differentials and
where differentiations take place leaving constants different sets of coordi-
nates. The brief incursion that follows in the next paragraph should suffice
to illustrate this.

Consider ∂
∂φ
dxl, where the xl is a Cartesian coordinate and φ is the azy-

muthal coordinate (say as in the spherical and cylindrical systems as well as
in an infinity of other systems) Let us denote the coordinates of any such
system as yi, and let φ be yn. We have

∂

∂φ
dxi =

∂

∂yn
∂xi

∂yl
dyl =

∂

∂yl
∂xi

∂yn
dyl = d

∂xi

∂φ
= dαi, (8)

where we have defined αi as ∂xi/∂φ. Let u be uldx
l and compute ∂u/∂φ

where the ul are functions of the x’s. We have

∂

∂φ
u =

∂

∂φ
(uidx

i) =
∂ui
∂φ

dxi + ui
∂dxi

∂φ
. (9)

But
∂ui
∂φ

dxi =
∂ui
∂xl

∂xl

∂φ
dxi = αl

∂u

∂xl
. (10)

Hence
∂u

∂φ
= αl

∂u

∂xl
+ dαiui. (11)

If we had followed the same process with a differential form of grade
greater than one, we would have obtained

∂u

∂φ
= αl

∂u

∂xl
+ dαi ∧ eiu. (12)

The right hand side is known as the Lie derivative of u by the Lie oper-
ator αi∂/∂xi, equivalently, by ∂/∂φ. But why even bother about defining
a concept of Lie derivative? Kähler showed how to find φ for any given
combination αi(x)∂/∂xi.
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Of course, the above is well known by experts on the theory of differential
equations. The problem is that they only know these things which any
undergraduate student in physics and mathematics should learn. As we shall
see in a later section, this treatment of Lie differentiation has implications
even for the foundations of quantum mechanics, as it establishes a difference
between the Dirac and Kaehler formulations of phase factors for rotational
symmetry. This difference raises the issue of what may be behind the h̄.
More on this later on (but just a little bit).

He went on to further develop the last equation, whose last two terms
are not covariant. He converted the ringt hand side of the equation into the
sum of two covariant terms. Then, if the metric does not depend on φ, the
new terms thus obtained are for the field u what the orbital and spin angular
momenta are for particles.

Another piece of promising mathematical analysis is constituted by his
obtaining the strict harmonic differentials in 3-D Euclidean space punctured
at the point that is used as the origin of coordinates. All that was done by
Kähler. We now proceed to report on a couple of interested mathematical
results obtained by this author.

Classical analysis theory teaches us that integration in the xy plane on a
closed curve around a singularity is independent of the curve. One can thus
choose to compute on a circle centered at the origin. The integration then
takes place with respect to φ because differential 1-forms, α, reduce to

a = jdφ

on such curves. Since (dxdy)2 = −1, we have

dφ =
xdy − ydx

ρ2
=
x− ydxdy

ρ2
dy = z−1dy,

where z = 1/(x+ ydxdy). Since dφ · dφ = 1/ρ2, we further have

j = ρ2(α · dφ).

Given α(= fdx + gdy), we can write it as wdx, which defines w. We then
compute

j = ρ2(wdx) · (z−1dy)

and obtain (wz)(2) where the superscript (2) means the differential 2-form
component (i.e. coefficient) of wz. Use this result in the intended integral
and make the radius go to zero. The theorem of residues results.
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But there may be much important implications if we were interested in
the calculus of complex variables. We have just seen in the plane that a
strict harmonic even differential form in the real plane plays the role of a
holomorphic function in the complex plane. Then, in 3-D, the mathematics
starts to look really interesting. We not only have the imaginary unit dxdy,
but also dydz and dzdx. And there is the ”entanglement” of imaginary units
since

(dxdy)(dydz) = dxdz.

In addition, we have a basis of strict harmonic differentials in 3-D and
what amounts to a Laurent expansion in them. Hence there is a very geomet-
ric brand of calculus of several complex variables in 3-D. Higher dimension
would be still more interesting because, in addition, we would have products
of imaginary units that are differential forms of higher even grade. For the
moment, D > 3 is of limited interest in this new vision because, apparently,
strict harmonic differentials in higher dimension have not yet been worked
out.

Still more relevant is the use of the traditional Helmholtz theorem in
its ”natural environment”, i.e. not of vector fields but of differential 1-
forms. It is an ackward theorem for those fields because gradients, curls
and divergences and divergences are involved. Gradients and curls of vector
fields are replaced with just exterior derivatives in a corresponding theorem
for differential 1−forms. This in turn can be eadily extended to arbitrary
grade in Euclidean spaces of dimension n > r. Furthermore, Riemannian
r−manifolds can always be viewed as r-surfaces in Euclidean spaces of di-
mension N > n for sufficiently high N . Since one cannot then use in the
proof of a Helmholtz theorem that a certain integral vanishes (the one that
vanishes at infinity when integrating over the whole Euclidean space), an
extra term (actually terms) contributes to the final result. One thus obtains
a theorem of a Helmholz type but with a harmonic terms contribution, like
in Hodge’s theorem. But it is far more sophisticated than Hodge’s, for one
not only is proving the decomposition (closed, co-closed and harmonic), but
actually specifying what they are in terms of integrands, as in Helmholtz
theorem. So, we strike at the heart of cohomology theory without using
co-homology theory.

What we have just reported illustrates that, with the KC calculus, one
finds results that match or improve on theorems in last chapters of highly
specialized books. One does so virtually without attempting to do so. It is
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only a matter of trying to compute with the KC what you would compote
with other calculi in your everyday work with mathematics. New doors
open themselves in front of you. And one achieves everything that we have
reported through the use of only scalar-valued differential forms. Imagine
what may happen if we were to use Clifford-valued differential forms. Can
any other calculus compete with Kähler’s?
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