GENERELIZED LOCAL COHOMOLOGY OVER GRADED RINGS WITH SEMI-LOCAL BASE RING

N. Zamani^{*a*} and A. Khojali^{*b*}

^a Department of Math., University of Mohaghegh Ardabili, Ardabil, Iran naserzaka@yahoo.com [corresponding]

^b Department of Math., University of Mohaghegh Ardabili, Ardabil, Iran khojali@gmail.com

Let $R = \bigoplus_{j \ge 0} R_j$ be a homogeneous Noetherian ring with semi-local base ring R_0 , i.e., R_0 has only finitely many maximal ideal. Let $R_+ = \bigoplus_{j \ge 1} R_j$ be the homogeneous ideal of R, generated by all positive degree homogeneous elements of R. We recall from [2] that a \mathbb{Z} -graded R-module T is tame or asymptotically gap free if $T_n=0$ for all $n \ll 0$, or else $T_n \neq 0$ for all $n \ll 0$. Recall also that, a sequence $(\mathscr{S}_n)_{n \in \mathbb{Z}}$ of subsets of Spec (R_0) is said to be *asymptotically stable* for $n \rightarrow$ $-\infty$ if there exists $m \in \mathbb{Z}$ such that $\mathscr{S}_n = \mathscr{S}_m$ for all $n \le m$. Using an idea of [2], for two finitely generated \mathbb{Z} -graded R-modules M and N, several results on the vanishing, Artinianness and tameness of the graded R-modules $H^i_{R_+}(M,N) = \varinjlim_{n \in \mathbb{N}} \operatorname{Ext}^i_R(M/(R_+)^n M,N)$ will be investigated.

Also, it will be shown that the sequence $(\operatorname{Ass}_{R_0}(H^i_{R_+}(M,N)_n))_{n\in\mathbb{Z}}$ is asymptotically stable, which in turn, implies that the sequence $(\operatorname{Supp}_{R_0}(H^i_{R_+}(M,N)_n))_{n\in\mathbb{Z}}$ is asymptotically stable too. Here, for an R_0 -module X the symbols $\operatorname{Ass}_{R_0}(X)$ and $\operatorname{Supp}_{R_0}(X)$ stand for the set of all associated primes and support of X respectively [1].

REFERENCES

- [1] M. Brodmann, R. Sharp, local cohomology: An algebraic introduction with geometric applications, Camb. Uni. Press, 1998.
- [2] M. Brodmann, M. Hellus, Cohomological patterns of coherent sheaves over projective schemes, J. Pure Applied Algebra, 2002, pp. 165-182.