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Abstract. New foundations for geometric algebra are proposed based upon the existing 
isomorphisms between geometric and matrix algebras. Each geometric algebra always has a faithful 
real matrix representation with a periodicity of 8. On the other hand, each matrix algebra is always 
embedded in a geometric algebra of a convenient dimension. The geometric product is also 
isomorphic to the matrix product, and many vector transformations such as rotations, axial 
symmetries and Lorentz transformations can be written in a form isomorphic to a similarity 
transformation of matrices. We collect the idea Dirac applied to develop the relativistic electron 
equation when he took a basis of matrices for the geometric algebra instead of a basis of geometric 
vectors. Of course, this way of understanding the geometric algebra requires new definitions: the 
geometric vector space is defined as the algebraic subspace that generates the rest of the matrix 
algebra by addition and multiplication; isometries are simply defined as the similarity 
transformations of matrices as shown above, and finally the norm of any element of the geometric 
algebra is defined as the nth root of the determinant of its representative matrix of order n. The main 
idea of this proposal is an arithmetic point of view consisting of reversing the roles of matrix and 
geometric algebras in the sense that geometric algebra is a way of accessing, working and 
understanding the most fundamental conception of matrix algebra as the algebra of transformations 
of multiple quantities. 
 
 
1    Introduction 

 
In his memoir On multiple algebra [1], Josiah Willard Gibbs explored the algebras proposed by 
several authors in the XIX century in order to multiply multiple quantities (vectors), and he 
reviewed Grassmann’s extension theory, Hamilton’s quaternions and Cayley’s matrices among 
others as well as the relations between them. Many kinds of products of vectors have been proposed 
since then, including Gibbs’ skew product of vectors in the Euclidean three-dimensional space [2: 
21] (from now on room space in order of brevity). What caught my attention was the following 
phrase of Gibbs [3: 179]: 
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 “We have, for example, the tensor of the quaternion2, which has the 
important property represented by the equation: ( ) rqrq TTT = . 
 There is a scalar quantity related to the linear vector operator which I have 
represented by the notation Φ  and called the determinant of Φ . It is in fact the 
determinant of the matrix by which Φ  may be represented, just as the square of the 
tensor of q  (sometimes called the norm3 of q ) is the determinant of the matrix by 
which q  is represented. It may also be defined as the product of the latent roots4 of 
Φ , just as the square of the tensor of q  might be defined as the product of the 
latent roots of q . Again, it has the property represented by the equation 

ψΦ=ΨΦ.  which corresponds exactly with the preceding equation with both 
sides squared.” 

    That is, he pointed out that the relation between the determinant of the matrix representation of a 
quaternion and its norm was a power. Gibbs said that the determinant was the square, but it is the 
4th power of the present norm for the regular 4×4 matrix representation: 
 

dkcjbiaq +++=   ⇒ ( )222224det dcbaqq +++==               (1) 
 
    I wish to quote another phrase of Gibbs [4, p. 157]: 
 “The quaternion affords a convenient notation for rotations. The notation 1)( −qq , 

where q  is a quaternion and the operand is to be written in the parenthesis, 
produces on all possible vectors just such changes as a (finite) rotation of a solid 
body.” 

    That is, if q  is represented by a matrix, a rotation is a similarity transformation. In fact, many 
vector transformations such as rotations, axial symmetries and Lorentz transformations can be 
written in the form qvqv' 1−=  [5,  6,  7: 27,  8: 19], which is isomorphic to a similarity 
transformation of matrices. It can be applied not only to vectors, but also to the other elements of 
geometric algebra. 
    While searching for a square root of the Klein-Fock equation in order to find the relativistic 
electron equation, Paul Adrien Maurice Dirac [9] surprisingly took a basis of complex matrices for 
the space-time geometric algebra instead of taking geometric elements (vectors) as the fundamental 
entities. Later on, Ettore Majorana [10] found a real 4×4 matrix representation5 equivalent to 
Dirac’s matrices. The isomorphism between geometric algebras and matrix algebras is well known. 
Each geometric algebra always has a faithful real matrix representation with a periodicity of 8 [11]: 

 
( )R1616,,88, ×++ ⊗≅≅ MClClCl qpqpqp                  (2) 

 

                                                 
2 William Rowan Hamilton called tensor what we take as the norm nowadays (See Elements of Quaternions, 
I: 163). 
3 Hamilton called norm the square of our norm, that is, the sum of the squares of the components of a 
quaternion. 
4 Latent roots means eigenvalues. 
5 It is curious that the smaller faithful representation of the non-physical Euclidean four-dimensional 
geometric algebra 0,4Cl  is included in the complex matrices ( )C44×M  or, by expansion, in the real 

( )R88×M . 
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    On the other hand, each square matrix algebra is embedded in a geometric algebra of a 
convenient dimension, while the geometric product is isomorphic to the matrix product. For 
instance, the algebra of square real 2×2 matrices, ( )R22×M , is isomorphic to the geometric algebra 
of the Euclidean plane 0,2Cl  and also to the geometric algebra of the hyperbolic plane 1,1Cl  in 
virtue of the general isomorphism [12]: 
 
  1,1, −+≅ pqqp ClCl                     (3) 
 
Another example is Majorana’s representation ( )R44×M , which is a real representation of the 
space-time geometric algebra 1,3Cl . 
 Since all Clifford algebras are included in matrix algebras, I wondered whether the most 
fundamental concept was matrices or geometric vectors, and if an arithmetic point of view could 
give us advantage over the geometric point of view with which geometric algebras have been 
studied until now. 
 
 
2    Geometric algebra ab initio 
 
Leopold Kronecker stated [13]: 

“God made the integers, and all the rest is the work of man.” 
    I do not wish to be as radical as him6 but let us suppose for a moment that the multiple quantities 
of real numbers are the only tangible reality. Let us search for a rule of multiplication of these 
multiple quantities taking Gibbs’ point of view and without any presupposition about this rule, 
although we expect to have two algebraic properties: the distributive property and the associative 
property. The first one is always required for any kind of vector multiplication. The second one is 
not always required, like in the case of the skew (cross) product, but its presence has clear 
advantages, especially for algebraic manipulations and geometric equation solving [14]. The most 
elemental outlining of the transformations of multiple quantities leads us to matrices. If 

( )nvv1=v  is a multiple quantity with real components, then we can find any other one 
( )'v'v n1=v'  through a linear transformation represented by a matrix ( )ijm=M : 
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The distinction between operator (matrix) and operand (multiple quantity) is fictitious since any 
operand is also an operator. So, the multiple quantity is also an operator and also has a matrix 
representation a column of which is the column here shown. Note that I am talking about “multiple 
quantities” instead of “vectors” because the word “vector” needs a more precise definition and I 
wish to avoid confusion between algebraic vectors (elements of a vectorial space) and geometric 
vectors (generators of the Clifford algebra). The composition of two linear transformations 

( )ijm=M  and ( )ijn=N  naturally leads us to the matrix product: 
 

                                                 
6 Perhaps if the development of quantum gravity destroys the fiction of the continuity of the room space we 
shall then agree with Kronecker. 
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That is: 
 
 vP'v' =   with  MNP =         (6) 
 
and the multiplication rule: 
 
 ∑=

k
kjikij mnp       (7) 

 
    Following a similar way, William Rowan Hamilton 
discovered quaternions as the operators q  which 
transform geometric vectors in the room space: 
 
 vqv' =     (8) 
 
and the rules of their product [15]. He was surprised by 
the fact that the transformation of three-dimensional 
vectors required four real quantities, a quaternion, 
instead of three quantities, which are the inclination θ  
of the plane, the declination ϕ , the angle α  between both vectors and the ratio of their lengths 

vv' /  (fig. 1). 
    Once square matrices, which already contain vectors, have been stated as the fundamental 
concept of geometric algebra, new definitions must be given in order to work with them. 
 
 
3    New definitions in geometric algebra 
 
The necessary new definitions that I propose are the following: 

1) A complete geometric algebra is a square matrix algebra ( )RkkM 22 ×
, N∈k . Many geometric 

algebras are not complete (such as quaternions or 0,4Cl ) because their smallest faithful 
representation is a subalgebra of a matrix algebra of the same order. The space-time geometric 
algebra is a complete geometric algebra because ( )R441,3 ×≅ MCl .  

2) The generating vector space (the geometric vector space) is the set of matrices and their linear 
combinations (a vectorial subspace) that generate the whole geometric algebra by multiplication. 
The concept is similar to the set of generators of a discrete group, but applied to a continuous 
group. The elements of the generating vector space are the geometric vectors. 

3) The norm of every element of a geometric algebra ( )RnnM ×  is the thn  root of the determinant of its 
representative matrix: 

 
n

nn MM det=×         (9) 
 
For instance, the subalgebra of quaternions is given by: 

Fig. 1. Quaternion operating upon a vector. 
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whose norm is obtained from the 4th root of the matrix determinant: 
  

2222
4 det dcba
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The norm can be a real number, an imaginary number and also zero since all the complete 
geometric algebras have divisors of zero. According to Frobenius’ theorem [16], the only division 
associative algebras7 are the real numbers, the complex numbers and quaternions. 

4) Isometries are defined as the similarity transformations of matrices: 
 

PMPM' 1−=   with    0det ≠P  ⇒ MM' detdet =                 (12) 
 

because they preserve the determinant and hence the norm. 
5) Two elements are said to be equivalent (the equivalence will be represented by ∼) if their matrices 

can be transformed one into the other through an isometry, that is, through a similarity 
transformation. To have the same norm and determinant does not imply to be equivalent since 
similar matrices have the same eigenvalues and the determinant is only their product. For instance, 
in the space-time algebra  ( )R441,3 ×≅ MCl , we have 321 ~~ eee  but they are not equivalent to 0e  

although 1detdetdetdet 0321 ==== eeee . 
6) A unity is a matrix whose square power is equal to I± , and whose determinant is equal to 1 (from 

order 4 on). The unities can be found through the tensor product of  the four unities of ( )R22×M , 
the smallest complete geometric algebra: 
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For instance, a unity of ( )R44×M  is: 
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Of course, any matrix similar to this one is also a unity. 

7)   Two elements are said to be perpendicular if they anticommute. 

                                                 
7 Algebras without divisors of zero. 
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4    Consequences of the new definitions 
  
4.1 The Pythagorean and pseudo-Pythagorean theorems 
 
Any set of perpendicular unities fulfils the Pythagorean or pseudo-Pythagorean theorem. Let { }iE  
and M  be respectively a set of perpendicular unities and a linear combination of them: 
 

( )Rnni M ×∈E   IE ii χ=2  1±=iχ  ji ≠∀   ijji EEEE −=             (15) 

∑=
i

iiEM α  ⇒ ∑∑∑ ==



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i

ii
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For instance, the determinant of a bivector of the space-time geometric algebra 1,3Cl  does not fulfil 
the Pythagorean theorem: 
 

( ) =+++++ 123123030201det ehegefecebea       

   ( ) ( )22222222 4 hcgbfahgfcba +++−−−++              (19) 
 
because 01232301 eeee =  and so on. However, if the first or the second triple of components vanishes, 
the norm is then given by the Pythagorean theorem: 
 

222
030201 cbaecebea ++=++  222

123123 hgfehegef ++=++            (20) 
 
because the remaining unit bivectors are perpendicular. 
 
4.2 Generality of the expression of isometries as similarity transformation 
 
The expression of isometries as similarity transformations is general and can be applied to any 
element of the geometric algebra. Let us suppose for a moment that this expression can only be 
applied to geometric vectors. Then, it can be applied to geometric products of vectors: 
 

qvqv' 1−=  ⇒ qvvqqvqqvq'v'v 21
1

2
1

1
1

21
−−− ==               (21) 

 
and also to exterior products of vectors and their linear combinations, that is, to any element of 
second degree: 
 

 ( ) ( ) ( ) qvvqqvvvvq'v'v'v'v'v'v'vv 21
1

1221
1

12212121 2
1

2
1

∧=−=−=∧=∧ −−              (22) 
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and so on for any degree, that is, for any element of the geometric algebra. Nowadays, certain 
isometry operators are written in a form that is only valid for geometric vectors but not for other 
elements of the geometric algebra. For instance, a rotation of angle θ  of a vector in the Euclidean 
plane can be written in 0,2Cl  as [17: 52]: 
 
 ( )θθ sincos 12evv' +=   2211 evevv +=                   (23) 
 
but the application of this operator to a complex 
number 12eba +  changes its argument. However, 
complex numbers are geometric products (or 
quotients) of two plane vectors. Both vectors are 
turned through the same angle of rotation θ , so that 
the angle α  between both vectors does not change, 
and therefore complex numbers must be preserved [7: 
27] (fig. 2). We can only obtain this result by means of 
the half-angle operator: 
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which is a similarity transformation. Now complex 
numbers are preserved because of their commutative 
property: 
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4.3 Isometries of perpendicular geometric vectors 
 
Isometries transform perpendicular geometric vectors into 
perpendicular geometric vectors, which can be easily proven: 
 

ijji EEEE −=    ⇒ PEPPEPPEPPEP 1111
ijji

−−−− −=     
⇒ 'E'E'E'E ijji −=             (26) 
 
because IPP 1 =− . Both vectors can lie either in an Euclidean 
plane or in a hyperbolic plane. In the second case, two vectors 
are perpendicular if we “see” their directions as being symmetric 
with respect to the quadrant bisectors [7: 156]. Fig. 3 shows how 
an isometry, such as a Lorentz transformation, transforms a pair 
of perpendicular vectors u , v  into another pair of perpendicular 
vectors u' , v'  .  
 
4.4 Perpendicular vectors as generators of the geometric algebra 
 
Any product of a number of perpendicular unities less than or equal to the dimension of the 
generating space is linearly independent of them and of other products of lower degree. It follows 

Fig. 2. Preservation, upon a rotation, of the
angle between two plane vectors and their
lengths, and therefore of their product or
quotient, a complex number.  

Fig. 3. Transformation of two
perpendicular vectors u, v into another
pair of perpendicular vectors u’, v’
under an isometry in a hyperbolic
plane. 
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immediately from the identity between the geometric product of perpendicular vectors and their 
exterior product: 

 
ji ≠∀       ijji EEEE −=  ⇒    kiki EEEE ∧∧=          ki <<                  (27) 

 
because each exterior product is a multiplication by a component perpendicular to the subspace 
generated by the previous vectors. This is true up to the dimension of the generating space. We can 
also prove this linear independence in another way. For instance, the complete geometric algebra 

( )R22×M  has two perpendicular generating unities 1E  and 2E : 
 
 1221 EEEE −=   12 ±== ii χE                  (28) 
 
Let us suppose that their product is a linear combination of the generating unities and the identity: 
 
 2211021 EEIEE ααα ++=                   (29) 
 
If we multiply the equality by 1E  both on the left and on the right we obtain: 
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If we multiply the equality by 2E  both on the left and on the right we obtain: 
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a result which comes into contradiction with the former result. Therefore, this proves that our 
hypothesis that 21EE  is a linear combination of { }21,, EEI  is false, whence it follows that the set 
{ }2121 ,,, EEEEI  is a basis of ( )R22×M . A proof based on this line of reasoning which is general 
for any dimension was already given by Marcel Riesz [18]. 
 
4.5 Reflections in the space-time geometric algebra 
 
Reflections need a special mention. When talking with Prof. L. Dorst and 
Prof. H. Pijls during the ECM 2008 conference in Amsterdam about my 
supposition that isometries are similarity transformations, they replied that 
the expression for reflections is not a similarity transformation since [19, 
20]: 
 

avav' 1−−=              (32) 
 
where v  is a geometric vector and a  is a vector perpendicular to the 
plane of reflection (fig. 4). The first objection to this expression is the 
fact that it can only be applied to geometric vectors, but not to other 
elements of the geometric algebra such as bivectors. The modification 
which I proposed [8: 36] was to write it as a similarity transformation in the following way: 

Fig. 4. Reflection of a
vector in a plane. 
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 aer 0=  ⇒ 0

11 ear −− −=                  (33) 
 
 avaaevearvrv' 1

00
11 −−− −=−==                   (34) 

 
where 0e  is the time unitary vector of the space-time geometric algebra 1,3Cl  and 12

0 −=e . Of 
course it has a consequence: this operator changes the sign of the time component: 
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0 eeaaaeaaeeearer'e −=−==−== −−−−                           (35) 

 
That is, a reflection would be an isometry reversing one spatial direction and also the time 
direction. We can discuss widely about whether the reversal of one spatial and the temporal 
components must be linked or not in a reflection. The physical world does not remain invariant 
under reflections because there are physical processes, driven by weak interactions, whose mirror 
image has a very much lower probability [21]. However, physical invariance is preserved under the 
CPT transformation8 [22], that is, if time is also reversed. On the other hand, the biological world 
has chosen one side of the mirror: all the proteins of the superior species are built with the L-amino 
acids while their mirror images, D-amino acids, are absent from the most biological structures. 
Anyway, we may wonder whether a reflection without time reversal can be a similarity 
transformation or not. Let us see how a generic element of the space-time geometric algebra 1,3Cl : 
 

1231230302013210 ekejeiehegefeeedecebaw ++++++++++=  
  0123123012031023 epeoenemel +++++                (36) 
 
changes under a reflection in the plane 23e , which produces the reversal 11 ee −→ : 
 
        1231230302013210 ekejeiehegefeeedecebaw' −−+++−++−+=      
  0123123012031023 epeoenemel −−−−+                (37) 
 
The characteristic polynomials of both elements9 are: 
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8 Charge conjugation, parity or spatial inversion, and time reversal. 
9 I have built these determinants with the matrix basis given in [8: 11]. Notwithstanding this, all the bases of 
Cl3, 1 are equivalent and they therefore have the same characteristic polynomial (38), although the matrix 
elements can change depending on the chosen basis. 
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In fact, it reduces to a change of sign of all the matrix elements in the highest right square and in the 
lowest left square. Both determinants are equal, and the characteristic polynomials are identical. 
Therefore, the existence of a similarity transformation for this reflection cannot be discarded 
although it is necessary that both matrices have the same invariant factors [23]. When this talk was 
given (on July 6th in the IKM 201210) I said that this question should be clarified soon. While 
writing this paper I have found out that this reflection is really a similarity transformation with 
operator 023e : 
 
 023

1
023 ewew' −=   023

1
023 ee =−                  (40) 

 
A question that immediately follows is whether reflections are similarity transformations in 
geometric algebras of any dimension or not. The answer is given in 4.7, since first we need the 
result of 4.6. 
 
4.6 Number of generators of a complete geometric algebra 
 
In a complete geometric algebra ( )RkkM 22 ×

 the maximum number of perpendicular unities, leaving 
the pseudoscalar aside, is kn 2= . It is well known that a geometric algebra generated by a 
geometric space of dimension n  has dimension n2  because: 
 

n
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Then, the dimension of this geometric algebra must be equal to the dimension of the linear space of 
the matrix algebra so that: 
 

kkn 222 ×=   ⇒ kn 2=                 (42) 
 
The pseudoscalar ne1  always anticommutes with all geometric vectors if the generating space has 
even dimension: 
 
 N∈k       kn 2=  ⇒ inni eeee 11 −=  i∀             (43) 
 
When counting the pseudoscalar, the maximum number of perpendicular unities is 12 +k . For 
instance, in ( )R44×M  the maximum number of perpendicular unities is 4 plus the pseudoscalar, 
while in ( )R88×M  the maximum number of perpendicular unities is 6 plus the pseudoscalar because 

8826 ×= . However, in virtue of the isomorphisms 1,1, −+≅ pqqp ClCl  and 4,4, +−≅ qpqp ClCl  for 
4≥p  [12], there are two or more non-equivalent sets of unities generating these geometric 

algebras [11]: 
 
  ( ) 2,21,344 ClClM ≅≅× R                              (44) 

                                                 
10 IKM 2012, International Conference on the Applications of Computer Science and Mathematics in 
Architecture and Civil Engineering. Conference held in the historical town of Weimar at the Bauhaus-
Universitët from 4th to 6th July 2012. 
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  ( ) 2,43,36,088 ClClClM ≅≅≅× R                  (45) 
 
The isomorphism 1,1, −+≅ pqqp ClCl  is displayed in the fact that, in the set of perpendicular unities 

{ }nn eee 11 ,, , we can take as generating space nee ,,1  or nnii eeeee 1111 ,,,,, +−  changing 
one vector ie  for the pseudoscalar ne1 . If both of them have the same square the Clifford structure 
is the same, but if their squares have different signs the Clifford structure changes according to this 
isomorphism. 
 
4.7 Reflections in a complete geometric algebra 
 
Reflections in an even geometric algebra qpCl ,  ( qpn +=  even) are similarity transformations. 
The proof begins when taking into consideration that axial symmetries change the sign of 
perpendicular components and retain the sign of the proportional component: 
 

ji ≠∀  jiji eeee −=−1                   (46) 
 

iiii eeee =−1                     (47) 
 
For instance, if 1e  is the operator, then the isometry is 11 ee → , 22 ee −→ , 33 ee −→  and so on. 
This fact is independent of the sign of the square of all the unities. Now we wish to change this 
operator for its dual by means of introducing the pseudoscalar ne1 . Let us indicate 12

1 ±==υne  
and let us introduce it in eqn. (46) in order to get the dual operators: 
 

injniiinjniijniiji eeeeeeeeeeeeeeeee 1111
12

1
11 υχυυ −=−== −−−             (48) 

 
where 2

ii e=χ . Now we cancel the factors ie  with those contained in the pseudoscalar:  
 

niijniiiiji eeeeee 1,111,11
1

+−+−
− =υχ                  (49) 

 
The cancellation of one factor yields iχ±  depending on the parity of the place it occupies in the 
pseudoscalar, but the cancellation of both factors for n even always results in a single negative sign. 
Therefore from (46) and (49): 
 

jniijniii eeee −=+−+− 1,111,11υχ                  (50) 
 
On the other hand we have: 
 

υχ −=−== +−+−+−+−
2
11,11

2
1,111,111,11 nniiiniiniiniii eeeeee               (51) 

 
This means that the inverse of the reflection operator niie 1,11 +−  is: 
 
 niiinii ee 1,11

1
1,11 +−

−
+− −= υχ                   (52) 
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From (50) and (52) we conclude that: 
 
 jniijnii eeee =+−

−
+− 1,11

1
1,11   ji ≠∀                 (53) 

 
but at the same time we also have: 
 
 iiniiniiniiinii eeeeeee −=−= +−

−
+−+−

−
+− 1,11

1
1,111,11

1
1,11               (54) 

 
Summarizing, the reflection in the hyperplane perpendicular to ie  is a similarity transformation 
with operator niie 1,11 +− . This result does not depend on the sign of the square of the pseudoscalar 

υ=2
1 ne , and it only needs n to be even. One consequence is the fact that reflections are similarity 

transformations in all the complete geometric algebras because their generating spaces always have 
an even dimension.  
    If n is odd the pseudoscalar ne1  commutes with all vectors: 
 
 12 += kn     N∈k  inni eeee 11 =                  (55) 
 
Introducing the square of the pseudoscalar in (55) in order to get the dual operators: 
 

injniiinjniijniiji eeeeeeeeeeeeeeeee 1111
12

1
11 υχυυ === −−−               (56) 

 
Now we cancel the factors ie  with those contained in the pseudoscalar which yields a positive sign 
for n odd: 
 

niijniiiiji eeeeee ,1,111,11
1

+−+−
− =υχ                  (57) 

 
Therefore: 
 

jniijniii eeee −=+−+− 1,111,11χυ  ji ≠∀                 (58) 
 
On the other hand we have: 
 

υχ === +−+−+−+−
2
11,11

2
1,111,111,11 nniiiniiniiniii eeeeee               (59) 

 
This means that the inverse of the operator niie 1,11 +−  is: 
 

niiinii ee 1,11
1

1,11 +−
−

+− =υχ                   (60) 
 
From (58) and (60) we conclude that: 
 

jniijnii eeee −=+−
−

+− 1,11
1

1,11   ji ≠∀                 (61) 
 
but at the same time we also have: 
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iiniiniiniiinii eeeeeee == +−
−

+−+−
−

+− 1,11
1

1,111,11
1

1,11                (62) 
 
which is not a reflection but an axial symmetry (the transformation obtained by means of the 
operator ie ). Therefore, reflections cannot be written as similarity transformations in odd geometric 
algebras ( qpn +=  odd). This result does not depend on the sign of the square of the pseudoscalar 

12
1 ±==υne . That is the reason why reflections in the room space cannot be written as similarity 

transformations in the geometric algebra 0,3Cl , which yields two distinct and non equivalent 

orientations of the geometric vector basis { }321 ,, eee . However, the incompleteness of odd 
geometric algebras is shown by the fact that there always exist matrices with the order of their 
lowest faithful representation (although not belonging to them) that allow to write reflections as 
similarity transformations. This is due to the fact that matrix representations of geometric algebras 
always have an even order. In the complete geometric algebras, the bases obtained from 
{ }ni eee ,,,1  by reversing one unity ii ee −→  or more unities are all equivalent through 
reflections: 
 
 { }ni eee ,,,1 ~{ }ni eee ,,,1 −                  (63) 
 
4.8 Duality 
 
Duality can be a similarity transformation in complete geometric algebras if a suitable Clifford 
structure is chosen. A Clifford structure is a set of generating unities and their products which are a 
basis of the considered matrix algebra11. I already showed [8: 40] that, in the space-time algebra, 
duality is a similarity transformation. Let us extend this result if possible to higher dimensions. 
Taking the same duality operator ne11+  as that found in the space-time, we have: 
 

( ) ( ) υ−=−=−+ 1111 2
111 nnn eee                  (64) 

 
For 1−=υ  this product does not vanish and we obtain the inverse of the duality operator: 
 

 ( ) ( )nn ee 1
1

1 1
2
11 −=+ −                   (65) 

 
Applying a similarity transformation with the duality operator to a unit vector we have: 
 

 ( ) ( ) ( ) ( ) ( )innininnini eeeeeeeeee'e 11111
1

1 2
111

2
111 −=+−=++= −             (66) 

 
If n is even, by means of (43) we arrive at: 
 
 nii ee'e 1=                     (67) 

                                                 
11 A Clifford structure qpCl ,  is the same if its generating unities are changed for other equivalent unities. The 
characteristic of a Clifford structure is its signature qp, , that is, how many generating unities with square 

1+  and how many generating unities with square 1−  it has. 
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which is exactly the dual, although the final sign will depend on the sign of the square iie χ=2  and 
on the parity of the place of ie  in the pseudoscalar. The requirements for this result are n even and 

12
1 −=ne . When is this last condition fulfilled? Let us see an example: 

 
 ( ) ( ) ( ) 2

4
2
3

2
2

2
1

123
3434

2
2

2
1

23
234234

2
1

3
12341234 111 eeeeeeeeeeeee +++ −=−=−=              (68) 

  
The numbers of swaps for 2

1 ne  are the triangular number: 
 

 
( )

2
1

1211
−

=++−+−=−
nn

nntn                  (69) 

 
 and the final result is therefore [24]: 
 

 ( ) ( )
( )

qnn

n
t

n eee n +
−

−=−== − 2
1

22
1

2
1 11 1υ   qpn Cle ,1 ∈                           (70) 

 
since there are only q squares equal to –1. Now: 
 

 12
1 −== neυ  ⇒ 

( )
qnn

+
−

2
1

    odd                (71) 

 
We have two cases. If N∈m  then: 
 

 mn 4=      ⇒ 
( ) ( ) qmmqnn

+−=+
− 142

2
1

 ⇒ q  odd            (72) 

 

 24 += mn  ⇒ 
( ) ( )( ) qmmqnn

+++=+
− 1412

2
1

 ⇒ q  even            (73) 

 
After a short analysis, both cases can be gathered in the condition: 
 
 ( )4mod2≡− qp                    (74) 
 
The first examples of the Clifford structures that fulfil the former results [25] are given in table 1: 
 

 n = p + q = 2k  2 4 6 8 10 
( )RkkM 22 ×

 22×M  44×M  88×M  1616×M  3232×M  

qpCl ,  0,2Cl  1,3Cl  2,4Cl   6,0Cl  3,5Cl   7,1Cl  0,10Cl    4,6Cl   8,2Cl  

 

Table 1. Clifford structures for complete geometric algebras up to n=10 where duality is also a similarity transformation.
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In the algebras mmCl ,  which are isomorphic to these ones, we cannot write duality as similarity 

transformations because 12
21 =me  according to (70). Then, if 12

1 =e  the square of its dual is 
12

22 −=me  or the reverse.  For example, in 2,2Cl  we have: 
 
 12

2
2
1 == ee   12

4
2
3 −== ee                  (75) 

 
The dual of 1e  is 234e  whose square is: 
 
 12

4
2
3

2
23434

2
2234234

2
234 −=−=== eeeeeeeee                 (76) 

 
Since 1e  has square 1+  and 234e  has square –1, they cannot be equivalent in any way including 
duality. Therefore duality is not a similarity transformation in 2,2Cl . This algebra is isomorphic to 
the space-time algebra: 
 
 ( )R441,32,2 ×≅≅ MClCl                    (77) 
 
and both are complete geometric algebras. However, by taking the structure 1,3Cl  instead of 2,2Cl  
for the algebra of the square matrices of order 4 we gain insight because duality then becomes a 
similarity transformation. 
    In the case that n is odd, duality is never a similarity transformation because the duals of the 
unities ie , the (n−1)-multivectors niie ,1,11 +− , contain an even number of vectors, and they cannot 
generate the whole geometric algebra but only the subalgebra containing elements of even degree. 
If { }ie  generate the whole algebra and { }niie ,1,11 +−  only the subalgebra, both sets cannot be 
equivalent. We can pass from the first ones to the second ones through duality, but it is not a 
similarity transformation because matrix similarity is always an equivalence relation. As an 
example, we can pass in the room space from 23e  to 1e  through the space duality as Hamilton did, 

but they are not equivalent because 12
1 =e  and 12

23 −=e . Equivalent unities always have the same 
square. While the vectors { }321 ,, eee  generate the whole 0,3Cl , the duals { }123123 ,, eee  only 
generate the quaternion subalgebra. 
    More definition improvements, rigorous proofs of those statements here outlined but not proven 
yet and new refinements must be carried out in future works. The knowledge we have on Clifford 
algebras will be very helpful in this task. 

 
 

5    Conclusions 
 
If we take multiple quantities as fundamental entities, then the matrix theory naturally follows from 
their transformations, and the matrix product from the composition of transformations. In this 
framework, a geometric algebra is defined as a matrix algebra or subalgebra that is closed under 
addition and multiplication, and that is generated by the unities obtained from the tensor product of 
the unities of ( )R2,2M . A complete geometric algebra is defined as a matrix algebra isomorphic to 

a geometric algebra over the real numbers, which only happens for ( )RkkM 22 ×
. Searching for a 

generalization of the norm of a complex number or a quaternion, we wish the norm of a product of 
two elements to be equal to the product of their norms. The unique quantity that fulfils this equality 
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is the determinant, because the determinant of a product of two matrices is equal to the product of 
their determinants. In order to fit this new norm to the norms of complex numbers, quaternions and 
vectors, the nth root of the determinant must be taken, where kn 2=  is the order of the square 
matrix algebra. Since n is always an even number, the norm M  of a matrix M can be a real or an 
imaginary positive number, which fulfils NMNM ±= . This definition of the norm of an 
element of a geometric algebra is independent of the order of the matrix representation and it fills a 
void in Clifford algebras theory, since the norm of elements with mixed degree has not been 
unambiguously defined until now, except for special cases such as quaternions. 
    On the other hand, an isometry is defined as a matrix similarity transformation, which preserves 
the determinant and therefore the norm. The advantage of this definition is the fact that the same 
operator can be applied to any element of geometric algebra. Isometries transform perpendicular 
vectors into perpendicular vectors. A new definition for unities is also given as matrices with square 
power equal to I±  and determinant equal to 1 (for 4≥n ) that are obtained from tensor product of 
the unities of ( )R22×M . Any matrix equivalent (through a similarity transformation) to a given 
unity is also a unity. 
   Several elements (matrices) of a geometric algebra are said to be perpendicular if they 
anticommute. In this case, it is deduced that the norm of a linear combination of them fulfils the 
Pythagorean or pseudo-Pythagorean theorem. In a complete geometric algebra ( )RkkM 22 ×

 there are 
a maximum of 12 +k  perpendicular unities, and k2  of them and their products induce the structure 
of Clifford algebra inside the matrix algebra (which we are calling geometric algebra) and form a 
basis of the algebra. Reflections are similarity transformations for all the even geometric algebras 
including the complete geometric algebras, while they are not in odd geometric algebras. The 
conditions a geometric algebra must fulfil for duality to be a similarity transformation are also 
given, showing that complete geometric algebras also have at least one Clifford structure where 
duality is a similarity transformation. 
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