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The applications of Clifford algebra [1] (also called geometric algebra) to plane 

geometry are shown in two different but complementary cases: the Euclidean and pseudo-
Euclidean planes. 

 
The Euclidean plane 
 
The geometric (or Clifford) product of two vectors is the addition of the scalar or 

inner product and the exterior or outer product [2], which results in a complex number: 
 

( )αα sincos· 12ewvwvwvwv +=∧+=  
 
The square of a vector is identical to the square of its norm: 
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and the geometric product of three vectors is associative. The basis vectors then fulfil: 
 

12
2

2
1 == ee  

 
From the anticommutativity of perpendicular vectors, the area unity is identified with 

the imaginary unity of complex numbers: 
 

122112 eeeee −==   12
12 −=e  

 
The expressions of scalar and geometric products of two vectors written with 

geometric product: 
 

2
· vwwvwv +

=    
2
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=∧  

 
are ready to any algebraic manipulation with geometric algebra. 

A rotation of a vector v through an angle α  is described as a product of the vector v 
and the unitary complex number z [3, 4]: 
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Reidel Publ. Company (Dordrecht, 1986) p. 30. 
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zvv ='   αα sincos 12ez +=  

 
which has allowed us to prove in an algebraic way that the addition of distances from a 
point to the three vertices of a triangle is minimal for the Fermat point [5, p. 77]. 
 The reflection of a vector v with respect to a line with direction vector u is written in 
geometric algebra as [6]: 
 
 uvuv 1−='  
 

The use of the algebraic properties of geometric algebra enables us to solve 
geometric equations and to obtain useful formulae as for the notable points of a triangle. 
For instance, the equations of the circumcentre O [5, p.71] and the orthocentre H [5, p.75] 
of a triangle ∆PQR are: 
 

 ( ) ( ) 1222 2
−

∧++−= QRPQPQRRPQQRPO  
 
 ( ) ( ) 1

···
−

∧++= RPQRRPQRQRPQPQRPH  
 
Note that the product between parentheses is a geometric product in both cases. When 
calculating the direction of Euler’s line we find a formula containing triple geometric 
products of the sides of the triangle ∆PQR: 
 

( ) ( ) 12 −∧++−= babacacbcbaOH            PQ=a  QR=b      RP=c  
 
Pseudo-Euclidean plane 
 
For the pseudo-Euclidean plane, the space-like unit vector has positive square 

while the time-like unit vector has negative square: 
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1 =e   011001 eeeee −==  
 
Then, the square of a vector is also equal to the square of its norm corresponding to a 
pseudo-Euclidean metric: 
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22 vv +−== vv  
 
The product of two hyperbolic vectors yields a hyperbolic number: 
 

( )ψψ sinhcosh 01ewvwv +=  
 
where ψ  is the hyperbolic angle between v and w. The norm z  of a hyperbolic number z 
is also pseudo-Euclidean: 
 

                                                 
[5] Ramon GONZÁLEZ CALVET, Treatise of Plane Geometry through Geometric Algebra 
(Cerdanyola del Vallès, 2007).  
[6] William E. BAYLIS, ed., Clifford (Geometric) Algebras, Birkhäuser (Boston, 1996), p. 11. 
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 01ez ba +=   222 * ba −== zzz  
 
 A hyperbolic rotation (relativistic Lorentz transformation) is then written in the same 
way as Euclidean rotations by multiplying the hyperbolic vector on the left by a unitary 
hyperbolic number: 
 
 zvv ='   1100 eev vv +=   ξξ sinhcosh 01ez +=  
 
where the hyperbolic argument ξ  is related to the relative velocity V of both inertial frames 
through: 
 

c
Vtanharg=ξ  

 
where c is the light celerity. ξ  is also 
proportional to the arc length of the equilateral 
hyperbola having radius v  which touches the 
extremes of v and v′: 
 

 
v
s∆

=ξ  

 
An axial symmetry of a hyperbolic vector v with respect to the direction u in the 

pseudo-Euclidean plane is written again as [5, p. 159]: 
 

uvuv 1−='  
 

since it changes the sign of the 
component perpendicular to u: 
 
 ( ) ⊥⊥

− −=+= vvuvvuv 1'  
 
The geometric plot of an axial 
symmetry is shown in fig. 2, where 
two perpendicular directions such as 
u and ⊥u  are seen by our eyes as 
symmetrical with respect to the 
bisector line in the first quadrant. 
From an early step of our life, our mind captures and processes the Euclidean properties 
of the room space, so that a plot on a flat paper seen by our eyes at a later age is 
subliminally interpreted by our mind as having Euclidean nature. We should properly 
interpret fig. 2 as a plane of Minkowski’s space-time, although as Einstein showed our 
mind has trouble assuming relativistic concepts, owing to the very small velocities with 
which we move in our neighborhood. 

The geometric algebra of the pseudo-Euclidean plane also gives the proof of some 
trigonometry theorems. Every triangle in the pseudo-Euclidean plane fulfils the law of 
hyperbolic sines: 
 

Figure 1 

Figure 2 
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γβα sinhsinhsinh
cba

==  

 
the law of hyperbolic cosines: 
 

αcosh2222 cbcba −+=  
 
and the law of hyperbolic tangents: 
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Finally, two hyperbolic triangles are 
said to be directly similar [7] if their 
sides are geometrically proportional, 
that is, if the hyperbolic numbers being geometric quotients of the corresponding sides are 
equal [5, p.167]. In figure 4, the triangles 'PRS∆  and 'PSR∆  are similar so that we have: 
 
 'PSPRPSPR' 11 −− =  
 
 By multiplying by PR on the left and 
PS on the right we obtain: 
 
 PS'PSPR'PR =  
 
Since the products are of proportional 
vectors they are commutative: the product 
of distances from a point P to the points of 
intersection of a line passing through P 
and the equilateral hyperbola 222 ryx =−  
is constant independently of the chosen 
line. We call this product the power of a 
point with respect to a hyperbola of 
constant radius r. Finally, let us see that the power of a point is found by the substitution of 
its coordinates into the Cartesian equation of the hyperbola: 
   

( ) ( ) 2222 ryx'OSOSPO'OSPOOSPO'PSPS PP −−=+=++=  

                                                 
[7] William Rowan HAMILTON (Elements of Quaternions [1869], ed. by Charles Jasper Joly, 3rd 
edition, Chelsea Publishing Company [N. Y., 1969], vol. I, p. 115.) stated that two similar triangles 
with sides a, b, c and a′, b′, c′ in the same plane of the Euclidean space are similar if and only if 
the quaternions obtained as quotients of two corresponding sides are equal (a′ a –1  = b′ b –1). 
   

Figure 3 

Figure 4 


