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Introduction 
 

In his characteristica geometrica [1, 2], Leibniz imagined and aimed to find an 
intrinsic  geometric language to study geometry and to perform directly geometric 
operations in a way different from Cartesian coordinates. Afterwards, Möbius [3] 
introduced the barycentric calculus, from which Grassmann developed the extension 
theory. In 1846, Grassmann won the prize offered by the Fürstlich Jablonowski’schen 
Gesellschaft in Leipzig to whom was capable of developing Leibniz’s idea with his 
memoir Geometrische Analyse [4, p.315]. While in his Die Lineale Ausdehnungslehre 
[4, p. 9] Grassmann introduced the inner and outer products of vectors, at the same time 
Hamilton discovered quaternions (1843), which he defined as geometric quotients of 
vectors [5]. Some years later, Clifford defined the geometric product [6] as the 
combination of Grassmann’s inner and outer products. All these works conformed 
geometric algebra. 

However, what is exactly geometric algebra and how is it understood? Peano, 
who had analyzed Grassmann’s work deeply [7], already had a unified vision of 
geometric algebra [8, p.170]: 
 

“Indeed these various methods of geometric calculus do not at all 
contradict one another. They are various parts of the same science, or 
rather various ways of presenting the same subject by several authors, 
each studying it independently of the others.” 
 
As thought by Leibniz, geometric algebra has many evident advantages in 

comparison with Cartesian geometry. According to Peano [9, p. 169], who studied the 
foundations of geometry as much as those of arithmetic: 
 

“The geometric calculus differs from the Cartesian geometry in that 
whereas the latter operates analytically with coordinates, the former 
operates directly on the geometrical entities”. 

 
The main aim of geometric algebra should be to solve geometric problems. With 

this goal, Gibbs and Heaviside transformed quaternion calculus into vector analysis [9, 
10], a non-associative and incomplete algebra of vectors. The difficulties of Cartesian 
geometry for solving many geometric problems were early pointed out by Gibbs [11]: 
 

“And the growth in this century of the so-called synthetic as opposed to 
analytical geometry seems due to the fact that by the ordinary analysis 
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geometers could not easily express, except in a cumbersome and 
unnatural manner, the sort of relations in which they were particularly 
interested”. 

 
In my opinion, however, geometric algebra is more than the Clifford algebra of a vector 
space [12, p.vi]: 
 

“The geometric algebra is the tool that allows us to study and solve 
geometric problems in a simpler and more direct way than purely 
geometric reasoning, that is, by means of the algebra of geometric 
quantities instead of synthetic geometry. In fact, the geometric algebra is 
the Clifford algebra generated by Grassman’s outer product on a vector 
space, although for me, the geometric algebra is also the art of stating 
and solving geometric equations –which correspond to geometric 
problems- by isolating the unknown geometric quantity using the 
algebraic rules of vector operations (such as the associative, distributive 
and permutative properties).” 

 
Therefore, geometric algebra is the new Ars Magna, since it is the most powerful and 
exclusive tool to solve geometric problems, as it will be shown below. Geometric 
algebra widens the field of application of the symbolic algebra of the Renaissance from 
real and complex quantities to vector entities. It is the algebra of the XXI century. The 
dream of Leibniz [13] has finally been accomplished. 
 
 

Steps for solving geometric problems with geometric algebra 
 

Let us see the steps that I follow to solve geometric problems with geometric 
algebra. First of all, we have a geometric problem given by geometric conditions (figure 
1). We must state and write the geometric equation corresponding to this geometric 
problem. We make use of barycentric coordinates and affine geometry in order to write 
the relations among points and vectors. For instance, all the incidence problems (e. g. 
Desargues’ theorem, Pappus’ theorem ...) can be written in this way. In other types of 
problems the inner and outer products will be used, and, if some geometric 
transformation is involved, it can be written by means of the geometric product. 

Once the equation is well stated, we proceed with its algebraic solution writing 
the inner and outer products by means of geometric product and applying the 
distributive, associative and permutative properties if needed. The geometric product 
allows to handle the algebraic equation without restrictions. 

The goal of the process is to isolate the unknown geometric quantity (usually a 
vector) maybe with help of the inverse of some geometric element. Therefore, the 
importance of being a product with inverse. 

Finally we arrive at a formula of geometric algebra for the unknown that may be 
written with inner, outer or geometric products depending on the symmetry of the 
problem. This formula can be applied to computation, aircraft navigation, computer 
vision or robotics, and it can be programmed by means of matrix algebra replacing the 
geometric elements by its matrix representation. In this case, we use the matrix product 
instead of the geometric product.   
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Figure 1. Steps for solving geometric problems with geometric algebra. 
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 About the geometric product 
 

In order to solve geometric equations we need a vector product with the 
following characteristics: 

1) Associative property, which allows us the manipulation of geometric equations. 
2) Distributive property for a suitable operation with vector addition. 
3) The square of a vector equals the square of its norm. 
4) The mixed associative property with scalars. 

The geometric product deduced in this way fulfils the following additional properties: 
1) There exists inverse of any vector, which allows us the isolation of a geometric 

unknown. 
2) The product of two orthogonal vectors is anticommutative. 
3) The product of proportional vectors is commutative. 
4) bababa ∧+⋅= . 
5) Permutative property:   a b c = c b a     if a, b, c are coplanar 
Let us prove these properties. 
1) Since the square of a vector equals the square of its norm, the inverse of a vector 

is proportional to this vector: 
 

 2
1

a
aa =−   111 == −− aaaa  

 
2) If c is the vector addition of a and b (c = a + b) we have by the distributive 

property: 
 

c2 = ( a + b )2 = ( a + b ) ( a + b ) = a2 + a b + b a + b2 
 

where we preserve the order of the factors because we do not know if the 
product has the commutative property. If a and b are orthogonal vectors, the 
Pythagorean theorem applies and then taking into account that the square of a 
vector is equal to the square of its modulus: 

 
a ⊥ b ⇒ c2= a2 + b2    ⇒   a b + b a = 0  ⇒   a b = − b a  

 
That is, the product of two orthogonal vectors is anticommutative. 

3) On the other hand, if a and b are proportional vectors then their product is 
commutative: 

 
  a || b ⇒ b = k a,   k  real    ⇒    a b = a k a = k a a = b a 
 

owing to the mixed associative property with scalars. If c is the addition of two 
vectors a, b with the same direction and sense, we have: 

 
  | c | = | a | + | b | c2 = a2 + b2 + 2 | a | | b | 
 

4) The geometric product of two vectors is in the general case, by the distributive 
property, the addition of the scalar and exterior products: 

 
a b = a ( b||+ b⊥ ) = a b|| + a b⊥ = | a | | b | (cos α +e12 sin α) = a · b + a ∧ b 
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a b|| = | a | | b | cos α = a · b inner or scalar product 
 
a b⊥ =| a | | b | (cos α +e12 sin α) = a ∧ b    outer or exterior product 
 
Writing the scalar and exterior products by means of the geometric product 
according to [14]: 
 

2
abbaba +

=⋅    
2

abbaba −
=∧  

 
allows us the transposition and isolation of the unknown vector in geometric 
equations. The geometric product of two vectors is represented by the 
parallelogram they form. 

5) Let us see the permutative property. In a geometric product of three or more 
vectors, one vector can be permuted with another vector two sites further 
without changing the product if all the vectors lie in the same plane. We may 
prove this by using the components that are parallel and perpendicular to the 
vector in the middle and by taking into account that proportional vectors 
commute while perpendicular vectors anticommute: 

 
 a b c = (a|| + a⊥) b (c|| + c⊥) = a|| b c|| + a|| b c⊥ + a⊥ b c|| + a⊥ b c⊥ 
 
 = c|| b a|| + c⊥ a|| b + c|| b a⊥ + c⊥ b a⊥ = c b a 
 
If the vectors are not coplanar then the difference of the product of three vectors 
minus the permutated product equals twice the volume of the parallelepiped 
formed by these vectors. We may prove this by using the component 
perpendicular to the plane containing the vectors on the extremes of the product, 
since the products by the coplanar component cancel each other by the 
permutative property: 
 
a b c – c b a = a b⊥ c – c b⊥ a = b⊥ (–a c + c a) = –2 b⊥ a ∧ c = 2 a ∧ b ∧ c 
 
 
About the geometric quotient 
 
Hamilton explained what is the geometric quotient of two vectors in the section 

“First Motive for naming the Quotient of two Vectors a Quaternion” of the Elements of 
Quaternions (1866, [15]). If two pairs of vectors are the homologous sides of two 
similar triangles in the same plane (figure 2), then their 
geometric quotient is equal. 

 
( ) ( )

11
,,

−− =⇒






=

=
twvu

t
w

v
u

twvu αα
 

 
This geometric quotient needs four quantities to 

be given: the angle between vectors, the relative length, 

Figure 2. Equivalent
geometric quotients 
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the inclination and the declination of the plane. Therefore, Hamilton defines the quotient 
of two vectors as a quaternion. 

 
Geometric transformations 
 
All the vector transformations can be written with geometric algebra by using 

the geometric elements that define them. For instance, a 
rotation (figure 3) is written as [16, 17]: 
 
 2/

1
2/ αα qvqv' −=   

 
where 2/αq  is a quaternion of the three-dimensional space 
or a complex number in the plane whose argument is half 
the angle of rotation, although a briefer form exclusive for 
vectors v can be used in plane geometry [18, 19]: 
 

 α1vv' = . 
 
Axial symmetries (figure 4) with respect to a line 

having a direction vector u can also be written as: 
 
 uvuv' 1−=  
 
The inversion with respect to a sphere (figure 5) with radius 
r is easily written by using the inverse of a vector: 
 

12 −= vrv'  
 
And finally a reflection of a vector with respect to a plane 
with bivector n (gigure 6) is written as: 
 

nvnv' 1−−=  
 
 
 
 
 
 
 

Examples of application of geometric algebra to solve geometric problems 
 

Now, let us see several examples of application of geometric algebra and 
especially the geometric product to solve geometric problems. 
 

Figure 3. Rotation 

Figure 4. Axial symmetry 

Figure 5. Inversion 

Figure 6. Reflection
with respect to a plane
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Circumcentre of a triangle 
 

The three bisectors of the sides of a triangle 
intersect in a unique point that is the centre of the 
circumscribed circle (figure 7), the circumcentre O, so 
that: 
 

2222 dOROQOP ===  
 
where d is the radius of the circumscribed circle. The 
solution to these equations obtained by means of 
geometric algebra is [12, p.71]: 
 

( ) ( ) 1222 2 −∧++−= QRPQPQRRPQQRPO  
 
Note the geometric quotient of a vector by an imaginary number. 
 
 

Orthocentre of a triangle 
 

The three altitudes of a triangle ∆PQR intersect in a unique point called the 
orthocentre H of the triangle (figure 8). Since H belongs to the altitude perpendicular to 
QR that passes through the vertex P, H is obtained from P by the addition of a vector 
that is perpendicular to QR. It is obtained by multiplying QR by an imaginary unknown 
number: 

 
H = P + z QR        z  imaginary  

 
Likewise, H also belongs to the altitude 
perpendicular to the base RP that passes 
through Q so that H is obtained from Q by an 
addition of a vector perpendicular to RP: 
 

H = Q + t RP        t  imaginary 
 

By solving this equation system, we 
arrive at a formula of the orthocentre that also contains a geometric quotient of vector 
by an imaginary number [12, p. 75]. 

 
( ) ( ) 1−∧⋅+⋅+⋅= RPQRPQRRRPQQQRPPH  

 
 
Vector of the Euler line of a triangle 

 
By subtraction of the orthocentre from the circumcentre we arrived at the 

formula of the vector of the Euler line of a triangle [20]:  
 
 ( RPRRQRQRQQPQPQPPRPOHOH −+−+−=−=  
  ) ( ) 1222222 2 −∧−+−+−+ QRPQPRQRRQPQQPRP  

Figure 7. Bisectors of the 
sides and circumcentre 

Figure 8. Altitudes 
and orthocentre 



Ramon González Calvet  Amsterdam, June 16th, 2010 

 8

 
( ) ( ) ( ) ( ) ( ) ( )[ PQRPQRRPQRPQOH −−−+−−−−=  

    ( ) ( ) ( ) ] ( ) 12 −∧−−−+ QRPQQRPQRP  
 
By taking a = PQ, b = QR and c = RP the formula is written as: 
 

( ) ( ) 12 −∧++−= babacacbcbaOH  
 
where the triangle edges a, b and c are vectors and all the products are, of course, 
geometric products. 
 

 
Centroid and circumcentre of a tetrahedron 

 
The centroid G of a tetrahedron ABCD is given by: 
 

( )DCBAG +++=
4
1   

 
The circumcentre O, the centre of the circumscribed sphere of the tetrahedron 

(figure 9), is equidistant from the four vertices so that: 
 

22222 dODOCOBOA ====  
 
where d is the radius of the circumscribed sphere. These 
equations lead to the equation system: 
 















−
=⋅

−
=⋅

−
=⋅

2

2

2

22

22

22

CDCDO

BCBCO

ABABO

 

 
whose solution is: 
 

( ) ( ) ( )[ ]( ) 1222222 2 −∧∧∧−+∧−+∧−= CDBCABBCABCDABCDBCCDBCABO  
 
or in a more symmetric form: 
 

[ ]( ) 12222 2 −∧∧∧+∧−∧+∧−= CDBCABBCABDABDACDACDBCDBCAO  
 
All the terms change the sign as well as the volume does under the cyclic permutation 
A→B, B→C, C→D, D→A, so that the formula remains unaltered. 
 
 

Figure 9. Tetrahedron 
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 Incentre of a tetrahedron 
 

The incentre I lies at the same distance from the four faces of a tetrahedron. By 
analogy with the incentre of a triangle [12, p. 73]: 

 

RPQRPQ
PQRRPQQRP

I
++
++

=  

 
we infer that: 
 

 
BCABABDADACDCDBC

BCABDABDACDACDBCDBCA
I

∧+∧+∧+∧
∧+∧+∧+∧

=  

 
a result that is very easily checked by means of outer products: 
 

 
BDBC

BIBDBC
ABAD

AIABAD
ADAC

AIADAC
ACAB

AIACAB
r

∧
∧∧

=
∧

∧∧
=

∧
∧∧

=
∧

∧∧
=  

 
where r is the radius of the inscribed sphere. 
 
 
 Monge point of a tetrahedron 
 

The Monge point M is the intersection of the planes passing through the 
midpoint of an edge (e.g. CD) and perpendicular to the opposite edge (e.g. AB): 

 














=⋅
+

=⋅
+

=⋅
+

0
2

0
2

0
2

CDMBMA

BCMDMA

ABMDMC

  ⇒ 














⋅
+

=⋅

⋅
+

=⋅

⋅
+

=⋅

CDBACDM

BCDABCM

ABDCABM

2

2

2
 

 
The addition of any pair of equations leads to the equation for another plane so that the 
six planes intersect in a unique point M: 
 

( ) ( )[ ABCDBCADCDBCABDCM ∧⋅++∧⋅+=  
  ( ) ] ( ) 12 −∧∧∧⋅++ CDBCABBCABCDBA  
 
 
 Euler line of a tetrahedron 
 
 By adding the equation systems for the circumcentre and the Monge point we 
observe the identity between the arithmetic mean of both points and the centroid: 
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( )

( )

( )













⋅
+++

=⋅
+

+
−

=⋅+

⋅
+++

=⋅
+

+
−

=⋅+

⋅
+++

=⋅
+

+
−

=⋅+

CDDCBACDBACDCDMO

BCDCBABCDABCBCMO

ABDCBAABDCABABMO

222

222

222

22

22

22

 

 
Therefore, the circumcentre, the Monge point and the centroid are collinear on 

the Euler line of a tetrahedron (figure 10): 
 

GDCBAMO
=

+++
=

+
42

  

 
 
Vector of the Euler line of a tetrahedron 
 
The difference of both equation systems yields: 

 














⋅
+−

=⋅

⋅
+−

=⋅

⋅
+−

=⋅

CDDABCCDOM

BCCDABBCOM

ABBCDAABOM

2

2

2
 

 
whose solution is: 
 







 ∧⋅

−
+∧⋅

+−
+∧⋅

+−
= BCABCDBCDAABCDBCCDABCDBCABBCDAOM

222
      ( ) 1−∧∧ CDBCAB  
 
The geometric product allows us to write the direction vector of the Euler line of a 
tetrahedron in a more symmetric form: 
 

( )CDBCABDABCABDACDABDACDBCDACDBCABOM −+−=  
( ) 14 −∧∧ CDBCAB  

 
where all products are geometric products. 
 
 Fermat’s theorem 
 
 An example of application of rotations is the 
Fermat theorem, which is easily proven by means of 
geometric algebra [12, p. 77]. Over the side of a triangle 
∆ABC we draw equilateral triangles. Introducing the 
complex number t = cos 2π/3 + e12 sin 2π/3, the rotation 
of AT through 2π/3 is written as: 

Figure 10. Euler line of a tetrahedron
formed by the circumcentre, the centroid
and the Monge point 

Figure 11. Fermat theorem 
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AT t = (AC + CT ) t = AC t + CT t = CU + BC = BU t = exp(2πe12/3) 
 
Also:  CB = BU t  and  AT = CS t 
 
so that CS, BU and AT have the same length,  each of them is obtained from each other 
by successive rotations through 2π/3 and they therefore intersect only in the Fermat 
point F. The addition of PA turned through 4π/3, PB turned through 2π/3 and PC is 
constant: 
 
PA t2 + PB t + PC = P'A t2 + P'B t + P'C ⇔ PP' (t2 + t + 1) = 0 
 
because  t2 + t + 1 = 0. Hence, there is a unique point Q 
such that  PA t2 + PB t + PC = QC . For any point P, the 
three segments form a broken line that only becomes a 
straight line for the Fermat point F, whence it follows 
that the addition of the distances from F to the three 
vertices is minimal provided that no angle of the 
triangle is greater than 2π/3. 
 
 

Law of sines for spherical triangles 
 
 An angle of a spherical triangle is that formed by the central planes containing 
the sides of this angle, so that it is obtained from the bivectors of the sides:  
 

( ) ( )
CABA
CABA

∧∧
∧×∧

=αsin  

 
where × is the antisymmetric product of two 
quaternions: 
 

( )pqqpqp −−=×
2
1  

 
Now we write the products of the numerator using the 
geometric product [12, p. 173]: 
 

( ) ( ) ( )( )
CABA

ABBAACCAACCAABBA
∧∧

−−+−−−
=

8
sin α  

 

CABA
ABACBACABCABACAACABCABACBACABA

∧∧

+−−+−++−
=

8
sin

22

α  

 
Applying the permutative property to the suitable pairs of products, we have: 
 

Figure 12. The addition of distances
to the Fermat point is minimal. 

Figure 13. Spherical 
triangle 



Ramon González Calvet  Amsterdam, June 16th, 2010 

 12

CABA
CBA

CABA
ACBAACBA

∧∧
∧∧

=
∧∧

∧∧+∧∧
=

−

8
26

sin
1

α  

 
since the volume A ∧ B ∧ C is a pseudoscalar, which commutes with all the elements of 
the algebra. Dividing by sin a = | B ∧ C |, and so on we arrive at the law of sines [21]: 
 

ACCBBA
CBA

cba ∧∧∧
∧∧

===
sin
sin

sin
sin

sin
sin γβα  

 
 
Chasles’ theorem 

 
The projective cross ratio of a pencil of four lines can be written as a product 

and quotient of exterior products: 
 

( )
XCXBXDXA
XDXBXCXAABCDX

∧∧
∧∧

=,  

 
The cross ratio is independent of the 

point X on the conic (Chasles’ theorem, figure 
14) and it is equal to the quotient of the half 
focal angles [12, p. 124]: 

 

2
sin

2
sin

2
sin

2
sin

),( BFCAFD

BFDAFC

ABCDX
∠∠

∠∠

=  

 
where F is any focus of the conic. Let us see the application of Chasles’ theorem to the 
problem of determining the point from where a photograph was taken. From five known 
references A, B, C, D and E in the photograph (figure 15) we calculate two cross ratios 
−(ABCD) and (ABCE) in this example− and then we plot in the map (figure 16) the 
conics having these cross ratios. Both intersect in four points, three of which are A, B 
and C and the last intersection is the point X from where the photograph was taken [22]. 
 

Figure 14. Chasles’ theorem 
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Figure 15. Photograph of Barcelona harbour. A: Memorial to Columbus, B: End of the ceiling 
of the France station railroad terminal, C: West corner of the hotel Arts in the Vila Olímpica, D: 
The tower Jaume I of the aerial tramway over the harbour, E: The tower Sant Sebastià of the 
aerial tramway over the harbour. 
 
 
 
 

 
 
Figure 16. Map of Barcelona corresponding to the photograph in fig. 14 with the drawn conics 
passing through the points ABCD and ABCE that intersect in the point X, the Mirador de 
l’Alcalde in the Montjuic mountain. 
 
We applied the formula of the projective cross ratio to the computation of the errors 
committed in the determination of the point from where a photograph was taken [23], 
and we found that the errors are independent of the pair of chosen conics. 
 
 Thank you very much for your attention. Have a nice stay in Amsterdam. We 
hope to see you in Barcelona soon! 
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