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FIRST PART: THE EUCLIDEAN VECTOR PLANE AND 
COMPLEX NUMBERS 

 
Points and vectors are the main elements of plane geometry. A point is 

conceived (but not defined) as a geometric element without extension, infinitely small, 
that has position and is located at a certain place in the plane. A vector is defined as an 
oriented segment, that is, a piece of a straight line having length and direction. A vector 
has no position and can be translated anywhere. It is usually called a free vector. If we 
place the end of a vector at a point, then its head determines another point so that a 
vector represents the translation from the first point to the second. 

Taking into account the distinction between points and vectors, the portion of the 
book devoted to the plane Euclidean geometry has been divided into two parts. In the 
first one, vectors and their algebraic properties are studied, which is enough for many 
scientific and engineering branches. In the second part, points are introduced and the 
affine geometry is then studied. 

All elements in geometric algebra (scalars, vectors, bivectors and complex 
numbers) are denoted by lowercase Latin characters and angles with Greek characters. 
Capital Latin characters will usually denote points in the plane. As you will see, the 
geometric product is not commutative so that fractions can only be written for real and 
complex numbers. Since the geometric product is associative, the inverse of a certain 
element on the left and on the right is the same, that is, there is a unique inverse for each 
element of the geometric algebra, which is indicated by the superscript −1. Moreover, 
due to the associative property, all factors in a product are written without parentheses. 
In order to make the reading easy, neither theorems nor corollaries nor equations have 
been numerated. When a definition is introduced, the definite element is marked with 
italic characters that catch the reader’s attention and help to find the definition once 
again. 

 
 
1. EUCLIDEAN VECTORS AND THEIR OPERATIONS 
 
A vector is an oriented segment, having length and direction but no position, that 

is, it can be placed anywhere without changing its orientation. Vectors can represent 
many physical magnitudes such as force, velociity, and also geometric magnitudes such 
as translation. 

We define two algebraic operations, the addition and the product of vectors, 
which generalise addition and multiplication of real numbers. 

 
 
Vector addition 
 
 The addition of two vectors u + v 

is defined as the vector going from the 
end of the vector u to the head of v when 
the head of u makes contact with the end 
of v (upper triangle in figure 1.1). 
Making the construction for v + u, that is, 
placing the end of u at the head of v 
(lower triangle in figure 1.1), we can see 
that the addition vector is the same. 

Figure 1.1 



2 RAMON  GONZALEZ  CALVET 

Therefore, the vector addition has the commutative property: 
 
u + v = v + u 

 
and the parallelogram rule follows: the addition of two vectors is the diagonal of the 
parallelogram formed by both vectors. 
The associative property is the result of 
this definition because (u+v)+w or 
u+(v+w) is the vector closing the 
polygon formed by the three vectors, as 
shown in figure 1.2. 
 The neutral element of the 
vector addition is the null vector, which 
has no length. Hence the opposite 
vector of u is defined as the vector −u 
with the same orientation but opposite 
direction, which added to the initial 
vector gives the null vector: 
 

u + ( −u) = 0  
 
 

Product of a vector and a real number 
 

The product of a vector and a real number (or scalar) k is defined as a vector 
with the same direction but whose length has been increased k times (figure 1.3). If the 
real number is negative, then the direction is opposite. The geometric definition implies 
the commutative property: 

 
 k u = u k 
 
Two vectors u, v with the same 

direction are proportional because there 
is always a real number k such that v = 
k u , that is, k is the quotient of both 
vectors: 

 
 k = u −1 v = v u −1 
 
Two vectors with different 

directions are said to be linearly 
independent. 

 
 
 Product of two vectors 

 
The product of two vectors will be called the geometric product in order to be 

distinguished from other vector products currently used. Nevertheless, I hope that these 
other products will play a secondary role when the geometric product becomes the most 

Figure 1.2 

Figure 1.3 
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used, a near event this book will forward. The adjective “geometric” will then not be 
necessary. 

We want the geometric product of two vectors to have the following properties: 
1) To be distributive over vector addition: 

 
 u ( v + w ) = u v + u w 

 
2) The square of a vector must be equal to the square of its length. By 

definition, the length (or norm) of a vector is a positive number and it is 
denoted by | u |: 

 
 u2 = | u |2 

 
3) The mixed associative property must exist between the product of vectors 

and the product of a vector and a real number. 
 

 k ( u v ) = ( k u ) v =  k u v 
 
 k ( l u ) = ( k l ) u =  k l u 

  
where k, l are real numbers and u, v vectors. Therefore, parentheses are not      
needed in this case. 

 
 These properties allow us to deduce the product. Let us suppose that c is the 
addition of two vectors a, b and let us calculate its square applying the distributive 
property: 
 
  c = a + b 
 
  c2 = ( a + b )2 = ( a + b ) ( a + b ) = a2 + a b + b a + b2 
  
We have to preserve the order of the factors because we do not know whether the 
product is commutative or not. 

If a and b are orthogonal vectors, the Pythagorean theorem applies and then: 
 
 a ⊥ b    ⇒     c2 = a2 + b2     ⇒     a b + b a = 0      ⇒        a b = − b a 
 

That is, the product of two perpendicular vectors is anticommutative. 
If a and b are proportional vectors then: 
 
a || b     ⇒     b = k a,   k  real    ⇒    a b = a k a = k a a = b a 

 
because of the commutative and mixed associative properties of the product of a vector 
and a real number. Therefore the product of two proportional vectors is commutative. If 
c is the addition of two vectors a, b with the same direction and sense, we have: 
 
 | c | = | a | + | b | 
 
 c2 = a2 + b2 + 2 | a | | b | 
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  a b = | a | | b |  ∠(a, b) = 0 
 
But if these vectors have opposite directions: 
 
 | c | = | a | − | b | 
 
 c2 = a2 + b2 − 2 | a | | b | 
 
 a b = − | a | | b | ∠(a, b) = π 
 
 What is the product of two vectors with any directions? Due to the distributive 
property, the product is resolved into a product by the proportional component b|| and 
another by the orthogonal component b⊥: 
 
  a b = a ( b|| + b⊥ ) = a b|| + a b⊥  
 
 The product of one vector by the proportional component of the other one is 
called the inner product (also scalar product) and denoted by a dot · (figure 1.4). 
Taking into account that the projection of b onto a is proportional to the cosine of the 
angle between both vectors, one finds: 
 
  a · b = a b|| = | a | | b | cos α  
 
 The inner product is always a real 
number. For example, the work made by 
some force acting on a body is the inner 
product of the force and the walked path. 
Since the commutative property has been 
deduced for the product of vectors with the 
same direction, the inner product is also 
commutative: 
 
 a · b = b · a 
 
 The product of one vector by the orthogonal component of the other vector is 
called the outer product (also exterior product) and it is denoted by the symbol ∧ : 
 
  a ∧ b = a b⊥ 
 
The outer product represents the area of the 
parallelogram formed by both vectors (figure 1.5): 
 
      a ∧ b =  a b⊥ = absin α 
 
Since the outer product is a product of orthogonal 
vectors, it is anticommutative: 
 
 a ∧ b = − b ∧ a 
 

Figure 1.4 

Figure 1.5 
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 Some examples of physical magnitudes that are outer products are angular 
momentum, torque and magnetic field.  

When two vectors are permuted, the oriented angle is reversed. Then, its cosine 
remains unchanged while its sine changes the sign. Thus, the inner product is 
commutative while the outer product is anticommutative. Now we can rewrite the 
geometric product as the sum of both products: 

 
a b = a · b + a ∧ b 
 
From here, the inner and outer 

products can be written using the geometric 
product: 

 

2
· abbaba +

=  

 

2
abbaba −

=∧  

 
In conclusion, the geometric product of two proportional vectors is commutative 

whereas the product of two orthogonal vectors is anticommutative, just for the pure 
cases of outer and inner products. The outer, inner and geometric products of two 
vectors only depend upon the norms of both vectors and the angle between them. When 
both vectors are rotated preserving the angle they form, all three products are also 
preserved (figure 1.6).  

What is the absolute value of the product of two vectors? Since the inner and 
outer products are linearly independent and orthogonal magnitudes, the norm of the 
geometric product must be calculated by means of a generalisation of the Pythagorean 
theorem: 

 
a b = a · b + a ∧ b ⇒  a b 2 = a · b2 +a ∧ b2 
 
 a b 2 =  a 2  b 2 ( cos2α + sin2α ) =  a 2  b 2 
 
That is, the norm of the geometric product is the product of the norms of each 

vector: 
 
 a b = a  b  
 
 
Product of three vectors: associative property 
 
It is demanded as the fourth property that the product of three vectors should be 

associative: 
 
4)     u ( v w ) = ( u v ) w = u v w 
 
Hence we can remove parentheses in multiple products, and with the foregoing 

properties we can deduce how the product operates upon vectors. 

Figure 1.6 
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We want to multiply a vector a by a product b c of two vectors. We ignore the 
result of the product of three vectors with different orientations except when two 
adjacent factors are proportional. We have seen that the product of two vectors only 
depends on the angle between them. Therefore the parallelogram formed by b and c can 
be rotated until b has, in the new orientation, the same direction as a. If b' and c' are the 
vectors b and c with the new orientation (figure 1.7) then: 

 
b c = b' c' 
 
a ( b c ) = a ( b'  c' ) 

 
and by the associative property: 

 
a ( b c ) = ( a b' ) c' 
 
Since a and b' have the same 

direction, a b' = ab is a real 
number and the triple product is a 
vector with the direction of c' whose 
length is increased by this amount: 

 
 a ( b c ) = ab c' 
 
Consequently, the norm of the product of three vectors is the product of their 

norms: 
 
a b c = abc 
 
On the other hand, we can first 

multiply a by b, and then we can rotate 
the parallelogram formed by both 
vectors until b has, in the new 
orientation, the same direction as c 
(figure 1.8). As a result: 

 
    ( a b ) c  =  a'' (  b'' c ) = a'' bc 

 
Although this geometric 

construction differs from the foregoing 
one, the figures clearly show that the 
triple product yields the same vector, as expected from the associative property. 
Moreover, we have: 
  
 ( a b ) c  = a'' bc = cb a'' = c b'' a'' = c ( b a ) 

  
That is, the triple product fulfils the permutative property: 
 
a b c = c b a 

 

Figure 1.7 

Figure 1.8 
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Every vector can be permuted with a vector located two positions farther in a product, 
although it does not commute with the neighbouring vectors. The permutative property 
implies that any pair of vectors in a product separated by an odd number of vectors can 
be permuted. For example: 
 
  a b c d  = a d c b = c d a b = c b a d  
 
 The permutative property is characteristic of the plane and it is also valid for the 
space whenever the three vectors are coplanar. This property is related to the fact that 
the product of complex numbers is commutative. 
 
 
 Product of four vectors 
 
 The product of four vectors can be deduced from the former reasoning. In order 
to multiply two pairs of vectors a, b and c, d, rotate the parallelogram formed by a and b 
until b' has the direction of c. The product is then the parallelogram formed by a' and d, 
but increased by the norm of b and c: 
 
 a b c d = a' b' c d = a'  b c d = b c a' d 
 
Now let us see the special case where a = c and b = d. If both vectors a, b have the same 
direction, the square of their product is a 
positive real number: 
 
 a || b  ( a b )2  =  a2 b2 > 0 
 
If both vectors are perpendicular, we must 
rotate the parallelogram through a right angle 
until b' has the same direction as a (figure 
1.9). Then, a' and b are proportional but they 
have opposite directions. Therefore, the 
square of a product of two orthogonal vectors 
is always negative: 
 
 a ⊥ b  ( a b )2  =  a' b' a b = a'bab = −a2 b2 < 0 
 
 Likewise, the square of an outer product of any two vectors is also negative. 
 
 
 Inverse and quotient of two vectors 
 
 The inverse of a vector a is the vector whose multiplication by a gives the unity. 
Only vectors that are proportional have a real product. Hence the inverse vector has the 
same direction and inverse norm: 
 

 a −1 = 2a
a   ⇒  a −1 a = a a −1 = 1 

 

Figure 1.9 
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 The quotient of two vectors is the product of one vector by the inverse of the 
other vector, which depends on the order of the factors because the product is not 
commutative: 
 
 a −1 b ≠ b a −1 
 
 Obviously, the quotient of proportional vectors with the same sense is equal to 
the quotient of their norms. When two vectors have different directions, their quotient 
can be represented by a parallelogram, which allows extending the concept of vector 
proportionality. We say that a is proportional to c as b is to d when their norms are 
proportional and the angle between a and c is equal to the angle between b and d1: 
 
 a c −1 = b d −1    ⇔ ac−1 =bd−1 and    ∠(a, c) = ∠(b, d) 
 

The parallelogram formed by a and b is then similar to that one formed by c and 
d.  ∠(a, c) is the angle of rotation from the first parallelogram to the second. 

The inverse of a product of several vectors is the product of the inverses with an 
exchanged order, as you may easily deduce from the associative property: 

 
( a b c ) −1 =  c −1 b −1 a −1 
 
 
Priority of algebraic operations 
 
As in the algebra of real numbers, and in order to simplify the algebraic notation, 

we will apply the following priority to the vector operations explained above: 
1) Parentheses, whose contents will be first operated. 
2) Powers with any exponent (square, inverse, etc.). 
3) Outer and inner products, which have the same priority but must be operated 

before geometric products. 
4) Geometric products. 
5) Additions. 
 
As an example, some algebraic expressions are given with the simplified 

expression on the left side and its meaning using parentheses on the right side: 
 
a ∧ b c ∧ d = ( a ∧ b ) ( c ∧ d ) 
 
a2 b ∧ c + 3 = ( ( a2 ) ( b ∧ c ) ) + 3 
 
a + b · c d e = a + ( ( b · c ) d e ) 

 
 

                                                           
1 Sir William Rowan Hamilton defined quaternions as quotients of two vectors in such a way 
that similar parallelograms located in the same plane in the three-dimensional space represent 
the same quaternion (Elements of Quaternions, posthumously edited in 1866, Chelsea 
Publishers 1969, vol. I, see p. 113 and fig. 34). In the vector plane, quaternions are reduced to a 
complex numbers. Quaternions were discovered by Hamilton on October 16th, 1843 before 
Clifford’s geometric product (1878).   
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 4. TRANSFORMATIONS OF VECTORS 
 
 Transformations of vectors are mappings of the vector plane onto itself. Those 
transformations preserving the norm of vectors, such as rotations and axial symmetries, 
are called isometries and those preserving angles between vectors are said to be 
conformal. Besides rotations and axial symmetries, inversions and dilations are also 
conformal transformations. 
 
 
 Rotations 
 
 A rotation through an angle α is the 
geometric operation consisting of turning a 
vector until it forms an angle α with the 
previous orientation. The positive direction of 
angles is counterclockwise (figure 4.1). Under 
rotations the norm of any vector is preserved. 
According to the definition of the geometric 
product, the multiplication of a vector v by a 
unit complex number with argument α 
produces a vector v' rotated through an angle 
α with respect to v. 
 
 v' = v 1α = v ( cos α + e12 sin α ) 
 
 This algebraic expression for rotations, when applied to a real or complex number 
instead of a vector, modifies its value. However, real numbers are invariant under 
rotations and the parallelograms can be turned without changing the complex number they 
represent. Therefore this expression for rotations, although it is useful for vectors, is not 
valid for complex numbers. In order to remodel it, we factorise the unit complex number 
into a product of two complex numbers with half the argument. According to the 
permutative property, we can permute the vector and the first complex number whenever 
writing the conjugate: 
 

v' = v 1α = v 1α/2 1α/2 = 1−α/2  v 1α/2 = ( cos 
2
α

− e12 sin 
2
α  ) v ( cos 

2
α  + e12 sin 

2
α ) 

 
The algebraic expression for rotations now found preserves complex numbers: 
 
 z' = 1−α/2  z 1α/2 = z 
 
Let us calculate the rotation of the vector 4e1 through 3/π2  by multiplying it by the unit 
complex number with this argument: 
 

 21121121 322
2
3

2
14

3
π2

 sin 
3
π2

cos4 eeeeeev' +−=







+−=






 +=  

 
On the other hand, using the half angle π/3 we have: 
 

Figure 4.1 
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 





 +






 −=

3
π sin

3
πcos4

3
π sin

3
πcos 12112 eeev'  

  

       2112112 322
2
3

2
14

2
3

2
1 eeeee +−=








+








−=  

 
Using the expression of half angle, it is not necessary that the complex number have unit 
norm because: 
 
 z =z1α/2   z −1 =1−α/2 z−1 
 
Then, the rotation through an angle α can be written as: 
 
 v' = z −1 v z 
 

The composition of two successive rotations implies the product of both complex 
numbers, whose argument is the addition of the angles of both rotations.  
 
 v'' = 1 −β / 2 v' 1β / 2 = 1 −β / 2 1 −α / 2 v 1α / 2 1β  / 2 = 1− (  α + β ) / 2 v 1 ( α + β ) / 2 
 
 
 Axial symmetries 
 

An axial symmetry (also called 
reflection) of a vector with respect to a 
direction is the geometric transformation that 
keeps constant the component with this 
direction and reverses the perpendicular 
component (figure 4.2). The product of 
proportional vectors is commutative and that 
of orthogonal vectors is anti-commutative. It is 
for this reason that the symmetric vector v' 
may be obtained from the multiplication of the 
vector v by the unit vector u of the symmetry 
axis on the left and right hand sides:    
 
 v' = u v u = u ( v|| + v⊥ ) u = u v|| u + u v⊥ u = v|| − v⊥  with   u2 = 1 
 
where v|| and v⊥ are the components of v respectively proportional and perpendicular to u.  
 Instead of the unit vector u, any vector d having the axis direction can be 
introduced into the expression for axial symmetries, whenever we write its inverse on the 
left side of the vector: 
 

dvd
d

dvdv' 1
2

−==  

  
 Although axial symmetries do not change the absolute value of the angle between 
two vectors, they change its sign. Under axial symmetries, real numbers remain invariant 

Figure 4.2 
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but complex numbers become conjugate because an axial symmetry generates a 
symmetric parallelogram (figure 4.3) and changes the sign of the imaginary part: 
 

z = a + b e12  a, b real 
 

       
( )

2
12

d
debad

z'
+

=  

 

*122
12

22

zeba
d

ebdad
=−=

−
=  

 
For example, let us calculate the axial 
symmetry of the vector 3 e1 + 2 e2 with 
respect to the direction e1 − e2. The 
resulting vector will be: 
 

 v' = 
2
1 ( e1 − e2 ) ( 3 e1 + 2 e2 ) ( e1 − e2 ) = 

2
1  ( e1 − e2 ) ( 1 − 5 e12 ) = − 2 e1 − 3 e2 

 
 
 Inversions 
 
 An inversion of radius r is the geometric transformation that maps every vector v 
onto r2 v −1, that is, onto a vector with the same direction but with a norm equal to r2 / v: 
 
 v' = r2 v −1  r real 
 
 This operation is a generalisation of 
the inverse of a vector in geometric algebra 
(radius r = 1). It is called inversion of 
radius r, because all the vectors with norm 
r, whose heads lie on a circle with this 
radius, remain unchanged (figure 4.4). The 
vectors whose heads are placed inside the 
circle of radius r are transformed into 
vectors having the head outside and 
reciprocally. 
 Inversion transforms complex 
numbers into proportional complex 
numbers with the same argument (figure 4.5): 
 
 v' = r2 v −1 w' = r2 w −1 z = v w 

 z' = v' w' = r4 v −1 w −1 = r4 v w v −2 w −2 = 2

4

z
zr  

 
 
 

Figure 4.3

Figure 4.4 
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 Dilations 
 
 A dilation is the geometric 
transformation that enlarges or 
shortens a vector, that is, it increases 
(or reduces) k times the norm of any 
vector while preserving its 
orientation. Dilation is simply the 
product by a real number k: 
 
 v' = k v   k  real 
 
 If k is negative, the vector 
direction is reversed. 
 Most of the transformations 
of vectors that will be used in this 
book are combinations of these four elementary transformations. Many physical laws are 
invariant under some of these transformations. In geometry, from vector transformations 
we define transformations of points in the plane, indispensable for solving geometric 
problems. 
 
 
 Exercises 
 
4.1 Calculate with geometric algebra what is the composition of an axial symmetry with a 

rotation. 
 
4.2 Prove that the composition of two axial symmetries with respect to different directions 

is a rotation. 
 
4.3 Consider the transformation under which every vector v multiplied by its transformed 

v' is equal to a constant complex z2. Resolve it into elementary transformations. 
 
4.4 Apply a rotation through 2π/3 to the vector –3 e1 + 2 e2 and find the resulting vector. 
 
4.5 Find the axial symmetry of the former vector in the direction e1 + e2 . 
 

Figure 4.5 
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 Perpendicular bisectors and circumcentre  
 
 The three perpendicular bisectors of the sides of a triangle meet at a unique point 
called circumcentre, the centre of the circumscribed circle. Every point on the 
perpendicular bisector of PQ is equidistant from P and Q. Analogously every point on 
the perpendicular bisector of PR is equidistant from P and R. The intersection O of both 
perpendicular bisectors is simultaneously equidistant from P, Q and R. Therefore O also 
belongs to the perpendicular bisector of QR and the three bisectors meet at a unique 
point. Since O is equally distant from the three vertices, it is the centre of the 
circumscribed circle. Let us use this 
condition in order to calculate the equation 
of the circumcentre: 
 
 OP2 = OQ2 = OR2 = d2 
 
where d is the radius of the circumscribed 
circle. Using position vectors of each point 
we have: 
 
 (P − O)2 = (Q − O)2 = (R − O)2 
 
The first equality yields: 
 
       P2 − 2 P · O + O2 = Q2 − 2 Q · O + O2 
 
By simplifying and arranging the terms containing O on the left hand side, we have: 
  
 2 ( Q − P ) · O = Q2 − P2 
 
 2 PQ · O = Q2 − P2  
 
From the second equality we find an analogous result: 
 
 2 QR · O = R2 − Q2 
 
Now we introduce geometric product instead of inner product into these equations: 
  
 PQ  O + O PQ = Q2 − P2 
 
 QR O + O QR = R2 − Q2 
 
 By subtraction of the second equation multiplied on the right by PQ minus the 
first equation multiplied on the left by QR, we obtain:  
 
 PQ  QR  O − O PQ  QR = PQ  R2 − PQ  Q2 − Q2  QR + P2  QR 
 
By using the permutative property on the left hand side and simplifying the right hand 
side, we have: 
 
 PQ QR O − QR PQ O = P2 QR + Q2 RP + R2 PQ 

Figure 8.3
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 2 ( PQ ∧ QR ) O = P2 QR + Q2 RP  + R2 PQ 
 
Finally, multiplication by the inverse of the outer product on the left gives: 
  
 O = ( 2 PQ ∧ QR ) −1 ( P2 QR + Q2 RP + R2 PQ ) 
 
    = − ( P2 QR + Q2 RP + R2 PQ ) ( 2 PQ ∧ QR ) −1 
 
a formula suitable to calculate the coordinates of the circumcentre. For example, let us 
calculate the centre of the circle passing through the points P(2, 2), Q(3, 1) and         
R(4, −2): 
 
 P2 = 8  Q2 = 10 R2 = 20 
 
 QR = R − Q = e1 − 3 e2       RP = P − R = − 2 e1 + 4 e2         PQ = Q − P = e1 − e2 
 
 2 PQ ∧ QR = − 4 e12 
 

 O = − ( 8 ( e1 − 3 e2 ) + 10 ( −2 e1 + 4 e2  ) + 20 ( e1 − e2 ) )
4
12e

 

 
    = − e1 − 2 e2 = ( −1, −2 ) 

 
 In order to deduce the circle radius, we take vector OP: 
 
 OP = P − O = P + ( P2 QR + Q2 RP + R2 PQ ) ( 2 PQ ∧ QR ) −1 
 
and extract the inverse of the area as common factor: 
  
OP = ( 2 P  PQ ∧ QR + P2 QR + Q2 RP  + R2 PQ ) ( 2 PQ ∧ QR ) −1 = 
 
    = [ 2 P ( P ∧ Q + Q ∧ R + R ∧ P ) + P2 QR + Q2 RP + R2 PQ ] ( 2 PQ ∧ QR ) −1 = 
 
    = [ P ( P Q − Q P + Q R − R Q + R P − P R ) + P2 ( R − Q ) + Q2 ( P − R ) + 
 
   + R2 ( Q − P ) ]  ( 2 PQ ∧ QR ) −1  
 
Simplification gives: 
 
OP = ( P Q R − P R Q + P R P − P Q P + Q2 P − Q2 R + R2 Q − R2 P ) ( 2 PQ ∧ QR ) −1 
 
 

= − (Q − P) (R − Q) (P − R) ( 2 PQ ∧ QR ) −1 = − PQ  QR  RP ( 2 PQ ∧ QR ) −1 
 
Analogously: 
 
OQ = − QR  RP  PQ ( 2 PQ ∧ QR ) −1        OR = − RP  PQ  QR ( 2 PQ ∧ QR ) −1 
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The radius of the circumscribed circle is the length of any of these vectors: 
 

 
PQR

RP
RPQ

QR
QRP

PQ
QRPQ

RPQRPQ
OP

sin2sin2sin22
===

∧
=  

 
where we find the law of sines. 
 
 
 Angle bisectors and incentre 
 
 The three bisectors of the angles of a 
triangle meet at a unique point called incentre. 
Any point on the bisector of the angle with 
vertex P is equidistant from sides PQ and PR 
(figure 8.4). Any point on the angle bisector 
passing through Q is also equidistant from sides 
QR and QP. Hence their intersection I is 
simultaneously equidistant from the three sides, 
that is, I is unique, and it is the centre of the 
circle inscribed in the triangle. 
 In order to calculate the equation of the 
angle bisector passing through P, we take the 
sum of the unit vectors of both adjacent sides: 
 

 
PR
PR

PQ
PQu +=   

QR
QR

QP
QPv +=  

 
 The incentre I is the intersection of the angle bisector passing through P, whose 
direction vector is u, and the one passing through Q, with direction vector v: 
 
 I = P + k u = Q + m v  k, m real 
 
Arranging terms we find PQ as a linear combination of u and v: 
 
 k u − m v = Q − P = PQ 
 
The coefficient k is: 
 

 
QRPQRPPQRPQRRPQRPQ

QRPQRPPQ
vu
vPQk

∧+∧+∧

∧
=

∧
∧

=  

 
Since all outer products are equal because they are twice the triangle area, this 
expression is simplified: 
 

 
QRPQRP

RPPQ
k

++
=  

Figure 8.4 
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 Then, the centre of the circumscribed circle is: 
 











+

++
+=+=

PR
PR

PQ
PQ

RPQRPQ
RPPQ

PukPI  

 
By taking common denominator and simplifying, we arrive at: 
 

 
PQRPQR

PQRRPQQRP
I

++

++
=  

 
For example, let us calculate the centre of the circle inscribed in the triangle with 
vertices: 
 

 P(0, 0) Q(0, 3)   R(4, 0) 
 
 PQ = 3 QR = 5 RP = 4 
 

 
( ) ( ) ( ) ( ) ( )1,1

12
12,12

345
0,433,040,05

==
++
++

=I  

 
 In order to find the radius, first we must obtain the segment IP: 
 

 
PQRPQR
PQRPRPQP

IP
++

+
=  

 
The radius of the inscribed circle is the distance from I to side PQ: 
 

( )
RPQRPQ

PQRP
PQ

PQIP
PQId

++

∧
=

∧
=,  

 
whence the ratio of radius follows: 
 

RPQRPQ
RPQRPQ
++

=
2
1

circle inscribed of radius
circle bedcircumscri of radius  

 
  
 Altitudes and orthocentre  
 
 The altitude of a side is the segment perpendicular to this side (also called base) 
that passes through the opposite vertex. The three altitudes of a triangle intersect at a 
unique point called orthocentre. Let us prove this statement by calculating the 
intersection H of two altitudes. Since H belongs to the altitude that is perpendicular to 
the base QR and passes through vertex P (figure 8.5), its equation is: 
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3
2 OHG +

=  

 
Hence the centroid is located between the orthocentre and the circumcentre, and its 
distance from the orthocentre is double its distance from the circumcentre. 
  
 
 Fermat's theorem 
 
 The geometric algebra allows us to prove Fermat’s theorem in a very easy and 
intuitive way. 

Over each side of a triangle 
∆ABC we draw an equilateral triangle 
(figure 8.7). Let T, U and S be the 
vertices of the equilateral triangles that 
are respectively opposite to A, B and C. 
Then, segments AT, BU and CS have 
the same length, form angles of 2π/3 
and intersect at a unique point F, called 
the Fermat point. Moreover, the 
addition of the three distances from any 
point P to each vertex is minimal when 
P is the Fermat point, provided that no 
interior angle of ∆ABC is greater than 
2π/3. 
 First we must demonstrate that BU is obtained from AT by means of a rotation 
through 2π/3, which will be represented by the complex number t: 
 

 AT t = (AC + CT ) t = AC t + CT t    
3
π2sin

3
π2cos 12et +=  

 
By construction, the vector AC turned through 2π/3 is the vector CU, and CT turned 
through 2π/3 is BC, so that: 
 
 AT t = CU + BC = BU 
 
Analogously, one finds CB = BU t  and  AT = CS t . Therefore, vectors CS, BU and AT 
have the same length and each of them is obtained from each other by successive 
rotations through 2π/3. 
 Let us see that the sum of distances from P to the three vertices A, B and C is 
minimal when P is the Fermat point. First we must prove that the vector sum of PA 
turned through 4π/3, PB turned through 2π/3 and PC is constant and independent of the 
point P. (figure 8.8). That is, for any two points P and P’ it is always true that: 
 
 PA t2 + PB t + PC = P'A t2 + P'B t + P'C 
 
A fact that is easily proven by arranging all the terms on one side of the equation: 
  

Figure 8.7 
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 PP' ( t2 + t + 1 ) = 0 
 
This product is always zero since  t2 + t + 1 = 0. Hence, there is a unique point Q such 
that: 
 
 PA t2 + PB t + PC = QC 
 
For any point P, the three segments form a 
broken line as shown in figure 8.8. Therefore, 
by the triangular inequality we have: 
 
PA + PB + PC ≥ QC 
 
When P is the Fermat point F, these segments 
form a straight line. Then, the addition of the 
distances from F to the three vertices is 
minimal provided that no angle of the triangle 
is greater than 2π/3: 
 
 FA + FB + FC = QC ≤ PA + PB + PC 
 
Otherwise, some vector among FA t2, FB t, FC has a direction opposite to the others, so 
that its length is subtracted from the others and their sum is not minimal. 
 
 
 Exercises 
 
8.1 Napoleon’s theorem. Over each side of a generic triangle draw an equilateral 

triangle. Prove that the centres of these three equilateral triangles also form an 
equilateral triangle. 

 
8.2 Leibniz’s theorem. Let P be any point in the plane and G the centroid of a triangle 

∆ABC. Then  3 PG2 = PA2 + PB2 + PC2 – ( AB2 + BC2 + CA2 ) / 3. 
 
8.3 Apollonius’ lost theorem. Let A, B and C be three given points in the plane. Every 

point G in the plane can then be expressed as a linear combination of these three 
points (G is also considered as the centre of masses located at A, B and C with 
weights a, b and c 4). 

 
 G = a A + b B + c C  with   a + b + c = 1 
 

Prove that: 
a) a, b, c are the fractions of the area of ∆ABC that are occupied by ∆GBC, 

∆GCA and ∆GAB respectively. 
b) The geometric locus of the points P in the plane such that                            

a PA2 + b PB2 + c PC2 = k  is a circle with centre G. 
 

                                                 
4 See August Ferdinand Möbius, Der Barycentrische Calcul (1827), p. 17. 

Figure 8.8 
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hyperbola, both distances are negative, so that the eccentricity is always positive. When    
e = 0 both foci are coincident at the centre of a circle. Note that a circle is obtained as the 
intersection of a cone with a horizontal plane. In this case, the directrices are the lines at 
infinity. 

The vectorial equation of a conic is obtained from the polar equation and contains 
the radius vector FP. Since FP forms an angle β (figure 11.3) with FQ, FP is obtained 
from the unit vector of FQ via multiplication by the exponential of 12eβ  and by the norm 
of FP yielding: 
 

( )ββ
β

sincos
cose1

e1
12eFQFP +

+
+

=  

  
 On the other hand, from the directrix property, one easily finds the following 
equation for a conic: 
 
 FP2 FT2 = e2 ( FT2 − FT · FP )2 
  
F, T and e are parameters of the conic, and P(x, y) is the mobile point. Therefore from this 
equation we will also obtain a Cartesian equation of second degree. For example, let us 
calculate the Cartesian equation of an ellipse with eccentricity ½, a focus at the point (3, 
4) and a vertex at (4,5): 
 
 e = 1/2  F = ( 3, 4 )  Q = ( 4, 5 )  P = ( x, y ) 
 

 21 33
e

e1 eeFQFT +=
+

=   T = F + FT = ( 6, 7 ) 

 
 FP = ( x − 3 ) e1 + ( y − 4 ) e2 
 

The equation of this conic is then: 
  

 [ ( x − 3 )2 + ( y − 4 )2 ] 18 = 
4
1 [ 18 − ( 3 (x − 3) + 3 ( y − 4 ) ) ]2 

 
and after simplification it is: 
 

7 x2  − 2 x y + 7 y2 − 22 x − 38 y + 31 = 0 
 
 

Chasles’ theorem 
 
 According to this theorem3, the projective cross ratio of any four given points A, 
B, C and D on a conic regarded from a point X also lying on this conic is constant, 
independently of the choice of the point X (figure 11.7): 
 

{ X, A B C D } = { X', A B C D } 
                                                 
3 Michel Chasles, Traité des sections coniques, Gauthier-Villars, Paris, 1865, p. 3. 
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To prove this theorem, let us take into account that points A, B, C, D, X must fulfil 

the vectorial equation of the conic. Let us also suppose, without loss of generality, the 

main axis of symmetry having the 
direction e1 (this supposition simplifies calculations): 
 
 FQ = FQ e1 
 
From now on, α, β, γ, δ, χ will be the angles that the focal radii FA, FB, FC, FD, FX 
form with the main axis with direction vector FQ (figure 11.8). Then: 
 

( ) 







+

+
−

+
+

+=−=
χ

χχ
α

αα
cose1

sincos
cose1

sincos
e1 2121 eeee

FQFXFAXA  

Introducing a common denominator, we find: 
 

( ) ( ) ( )[ ]
( ) ( )χα

χαχαχαχα
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++
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From XA and the analogous expression for XC, and after simplification we obtain: 
 

( ) ( )
( ) ( )( )χγα

αχχαχγγχγααγ
cose1cose1cose1

cossincossincossincossincossincossine1 2
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Using the trigonometric the half-angle identities, the sum is converted into a product of 
sines (exercise 6.2): 

( )

( ) ( ) ( ) 12

2

2

cose1cose1cose1
2
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Figure 11.7 Figure 11.8 
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Likewise, the other outer products are obtained. The projective cross ratio is their 
quotient, where the factors containing the eccentricity or the angle χ are simplified: 
 

2
sin

2
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2
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},{
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since γ −α is the angle AFC∠ , etc. Therefore, the projective cross ratio of four points A, 
B, C and D on a conic is equal to the quotient of the sines of the focal half angles, which 
do not depend on X, but only on the positions of A, B, C and D, a fact that is the proof of 
Chasles’ theorem. This statement is trivial for the case of a circle, because the inscribed 
angles are half the central angles. However, angles inscribed in a conic vary with the 
position of the point X and they differ from half focal angles. In spite of this, the fact that 
the quotient of the sines of inscribed angles (projective cross ratio) is equal to the quotient 
of the sines of half focal angles is a notable result. For the case of the hyperbola, 
remember that the focal radius of a point on the non-focal branch is oriented towards the 
focal branch but it has negative norm so that the focal angle is measured with respect to 
this orientation. 
 
 
 Tangent and perpendicular to a conic 
 
 The vectorial equation of a conic with 
the major diameter oriented in the direction 
e1 (figure 11.9) is: 
 

        
( ) ( )αα

α
sincos

cose1
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21 ee
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The derivation with respect to the angle 
α gives: 
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This derivative has the direction of the line tangent to the conic at the point P, and its unit 
vector t is: 
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 The unit normal vector n is orthogonal to the tangent vector:  
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Figure 11.9 
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 
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Now it is obvious that there should only be a unique root with odd index, which always 
exists for every hyperbolic number: 
 

 
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baeba

0
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1   n odd 

 
On the other hand, if a + b > 0 and a − b > 0 (right sector) there are four roots with even 
index, one in each sector: 
 
 n even 
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If the number does not belong to the right sector, some of the diagonal elements will be 
negative and there is no even root. This shows a panorama of the hyperbolic algebra far 
from that of complex numbers. 
 
  

Hyperbolic analytic functions 
 
 What conditions should a hyperbolic function f(z) of a hyperbolic variable z 
fulfil to be analytic? We want the derivative to be well defined: 
  

 ( ) ( ) ( )
z

zfzzfzf
z

I

∆
−∆+

=∃
→∆ 0

lim      

 
that is, this limit must be independent of the direction of ∆z. If f(z) = a + b e1 and the 
variable z = x + y e1 , the derivative calculated in the direction ∆z = ∆x is then: 
 

 ( )
x
be

x
azf I

∂
∂

+
∂
∂

= 1  

 
while the derivative calculated in the direction ∆z = e1 ∆y becomes: 
 

 ( )
y
b

y
aezf I

∂
∂

+
∂
∂

= 1  

 
Both expressions must be equal, which results in the conditions of hyperbolic 
analyticity: 
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Note that exponential and logarithm fulfil these conditions and are therefore hyperbolic 
analytic functions. More exactly, the exponential function is analytic in the whole plane 
while the logarithm function is analytic in the left and right sectors, where the 
determinant of the hyperbolic numbers is positive. 

By derivation of both identities one finds that analytic functions satisfy the 
following hyperbolic partial differential equation, called one-dimensional wave 
equation: 
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 Now we must state the main integral theorem for hyperbolic analytic functions: 
if a hyperbolic function is analytic in a certain region in the hyperbolic plane, then its 
integral following a closed path C within this region is zero. If the hyperbolic function 
is ( ) 1ebazf +=  then the integral is: 
 
 ( ) ( ) ( ) ( ) ( )∫∫∫∫ +++=++=

CCCC

dxbdyaedybdxaedydxbeadzzf 111  

 
Since C is a closed path, we may apply Green’s theorem to write: 
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where D is the region bounded by the closed path C. Since f(z) fulfils the analyticity 
conditions everywhere within D, the integral vanishes. 
 From here, other theorems analogous to those of complex analysis follow, e. g.: 
if f(z) is a hyperbolic analytic function in a simply connected domain D and z1 and z2 are 
two points in D then the definite integral: 
 

( )∫
1

2

z

z
dzzf  

 
between these points has a unique value independently of the integration path. 

Let us see an example. Consider the function f(z) = 1 / ( z − 1 ). This function is 
only defined if the inverse of z − 1 exists, which implies z − 1≠0. Of course, this 
function is analytic neither at z = 1 nor at the points: 
 
 z − 12 = 0 ⇔ ( x − 1)2 − y2 = 0 ⇔ ( x + y − 1) ( x − y − 1) = 0 
 
The lines x + y = 1 and x − y = 1 divide the analyticity domain into four sectors. Let us 
calculate the integral: 
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 ∫
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following two different paths in the right sector. The first one is a straight path given by 
the parametric equation  z = 5 + t e1 (figure 12.2): 
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Owing to symmetry, the integral of the odd 
function is zero: 
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The second path (figure 12.2) is the hyperbola 
going from point (5, −3) to (5, 3): 
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Introducing its parametric equation, z = 4 (cosh t + e1 sinh t) we have: 
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Due to symmetry, the integral of the hyperbolic sine (an odd function) divided by the 
denominator (an even function) is zero. We then split the integral into two integrals and 
find its value: 
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We now see that the integral following both paths gives the same result, as indicated by 
the theorem. In fact, the analytical functions can be integrated directly by using the 
indefinite integral: 
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Figure 12.2 
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Consequently, the eccentricity e of the hyperbola is related to the obliquity φ of the 
transverse plane: 
 

1ecos 2 −=φ    with    2e1 <<  
 

The conjugate diameters of any hyperbola are intersections of this transverse 
plane with a pair of orthogonal axial planes; in other words, two radii are conjugate 
(figure 11.17) if their projections onto the horizontal plane are the semimajor and 
semiminor axes of the prism turned through the same hyperbolic angle ϕ : 
 
 ϕϕ sinhcosh OSOQOQ' +=  
 
 ϕϕ coshsinh OSOQOS' +=  
 
Our Euclidean eyes see these horizontal projections as symmetric lines with respect to 
the quadrant bisector. However, they are actually orthogonal because: 
 
 OQ' 2 − OS' 2 = OQ2 − OS2 
 
and, therefore, they can be taken as a new system of orthogonal coordinates. We can 
even draw a new picture with the new diameters on the Cartesian axis. 

The central equation of the hyperbola using the rotated axes is: 
 
 ( ) ( )( )ϕψϕψ −+−±= sinhcosh OS'OQ'OP  
 
which shows that a hyperbolic rotation of the coordinate axes has been made with respect 
to the principal diameters of the hyperbola. 
 
 

The law of sines and cosines 
 

Since the norm of the area is identical in both the Euclidean and the hyperbolic 
planes, a parallelogram is divided by its diagonal into two triangles with equal area. 
This statement is somewhat subtle since the Euclidean congruence of triangles is not 
valid in the hyperbolic plane. We will return to this question later. Now we only need to 
know that the area of a hyperbolic triangle is half the outer product of any two sides. 

Following the perimeter of a triangle, let a, b, and c be its sides respectively 
opposite to the angles α, β and γ. Then, the angles formed by the oriented sides and the 
angles α, β and γ are supplementary: 
 
 accbba ∧=∧=∧    ⇒    βαγ sinhsinhsinh accbba −=−=−   
 

 
γβα sinhsinhsinh

cba
==     

 
which is the law of sines. 

Since a triangle is a closed polygon, 0=++ cba  and we have: 
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 ( ) cbcbcba ·22222 ++=−−=  ⇒ αcosh2222 cbcba −+=  
 
which is the law of cosines. And also: 
 
 βcosh2222 cacab −+=  
 

γcosh2222 babac −+=  
 
When applying both theorems, we must 
be careful with the sides having 
imaginary length and the signs of the 
angles and trigonometric functions. 
 As an application of the law of 
sines and cosines, consider the 
hyperbolic triangle having the vertices 
A(5, 3), B(1, 0), C(10, 1), whose sides 
have real norm (figure 13.8): 
 

 212 34 eeABAB −−=−=   ( ) ( ) 734 22 =−−−=AB  
 
 2129 eeBCBC +=−=   8019 22 =−=BC  
 

 212 25 eeCACA +−=−=   ( ) 2125 22 =−−=CA  
 

αcosh2222 ABCAABCABC −+=   
37

26cosh −=α  

 

βcosh2222 BCABBCABCA −+=   
354

33cosh =β  

 

γcosh2222 CABCCABCAB −+=   
1054

47cosh =γ  

 
From where it follows that: 
 
 α = −1.3966... − π e12  β = 0.8614...  γ = 0.5352...   
 
I have obtained their signs from the definition of the angles α =∠BAC, β =∠CBA,            
γ =∠ACB and the geometric plot (figure 13.8). Note that α + β + γ = −π e12 and that 
they fulfil the law of sines: 
  

γβα  sinh sinh sinh
ABCABC

==  

 

Figure 13.8 
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FOURTH PART: PLANE PROJECTIONS OF THREE-DIMENSIONAL SPACES 
 

The complete study of the geometric algebra of the three-dimensional spaces falls 
out of the scope of this book. However, due to the importance of Earth charts and of 
Lobachevsky’s geometry -the first one is more practical and the second one more 
theoretical-, I have written this last section. In order to make the explanations clearer, the 
three-dimensional geometric algebra has been reduced to the minimal concepts, 
enhancing the plane projections.  

The geometric quality of being Euclidean or pseudo-Euclidean is not the signature 
+ or − of a coordinate, but the fact that two coordinates have the same or different 
signature, in other words, it is a characteristic of the plane. For instance, a plane with 
signatures + + is equivalent, from a geometric point of view, to another with − − . 
Therefore, only two kinds of three-dimensional spaces exist: the room space where all the 
planes are Euclidean (signatures + + + or − − −), and the pseudo-Euclidean space, which 
has one Euclidean plane and two orthogonal pseudo-Euclidean planes (signatures + − − or 
+ + − ). 
 
 

14. SPHERICAL GEOMETRY IN THE EUCLIDEAN SPACE 
 
 The geometric algebra of the Euclidean space 
 
 A vector of the Euclidean space is an oriented segment in this space with direction 
and sense that may represent other physical magnitudes such as forces, velocities, electric 
fields, etc. The set of all segments (geometric vectors) together with their addition 
(parallelogram rule) and their product by real numbers (dilation of vectors) has a structure 
of vector space, symbolised here by V3. Every vector in V3 has the form: 
 
 332211 evevevv ++=  
 
where ei are three unit perpendicular vectors, which are a basis of the space. If we define 
an associative product (geometric or Clifford product) as a generalisation of the 
multiplication of vectors in the Euclidean plane, we will arrive at: 
 

12 =ie   and   ijji eeee −=  for i ≠ j  
 
In general, the square of a vector is the square of its norm and perpendicular vectors 
anticommute whereas proportional vectors commute. 

The geometric algebra generated by the space V3 has eight dimensions: 
 
 ( ) 1231231233210,33 ,,,,,,,1 eeeeeeeClVCl ==  
 
 Let us see the product of two vectors in more detail: 
 
 ( ) ( ) 332211332211332211 wvwvwvewewewevevevwv ++=++++=  
 

( ) ( ) ( ) 121221313113232332 ewvwvewvwvewvwv −+−+−+  
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The product (or quotient) of two vectors is called a quaternion1. Quaternions are the even 
subalgebra of Cl3, 0 that generalise complex numbers to the three-dimensional space. 
Splitting a quaternion into the real and bivector parts, we obtain the inner (or scalar) 
product and the outer (or exterior) product respectively: 
 
 332211· wvwvwvwv ++=  
 
 ( ) ( ) ( ) 121221313113232332 ewvwvewvwvewvwvwv −+−+−=∧  
 

Bivectors are oriented plane surfaces and indicate the direction of planes in space. 
Those who are acquainted with vector analysis will say that both vectors and bivectors are 
the same thing. This confusion was originated by Hamilton2 himself, and continued by the 
founders of vector analysis, Gibbs and Heaviside. However, vectors and bivectors are 
different things just as physicists have experienced and know since a long time ago. The 
proper vectors are usually called “polar vectors” while the pseudo-vectors, which are 
actually bivectors, are usually called “axial vectors”. The following magnitudes are 
vectors: of course a geometric segment, but also a velocity, an electric field, the 
momentum, etc. On the other hand, the oriented area is, of course, a bivector, but also the 
angular momentum, the angular velocity and the magnetic field. A criterion to distinguish 
both kinds of magnitudes is the reversal of coordinates, which changes the sense of 
vectors while leaves bivectors unchanged. 
 The product of two bivectors yields a real number plus a bivector. Both parts can 
be separated as symmetric and antisymmetric product. The symmetric product is a real 
number and its negative value will be denoted here by the symbol • while the 
antisymmetric product is also a bivector and will be denoted here by the symbol × : 
 

 ( ) 1212313123232
1 wvwvwvvwwvwv ++=+−=•  

 

 ( )vwwvwv −−=×
2
1   

 
  ( ) ( ) ( ) 122331312331122323122331121231 ewvwvewvwvewvwv −+−+−=  
 
 wvwvwv ×−•−=  
 
 Let us see what happens with the outer product of three vectors. According to the 
extension theory of Grassmann, the product u ∧ v ∧ w is the oriented volume obtained 
from the surface the bivector u ∧ v represents by a parallel translation along the      
segment w:  
 

                                                 
1 From this definition, Hamilton deduced the multiplication rule of i, j, k. I recommend the 
reading of the initial chapters of the Elements of Quaternions, especially the section 2 “First 
Motive for naming the Quotient of two Vectors a Quaternion” in chapter I, p. 110.   
2 This confusion is due to the fact that vectors and bivectors are dual spaces of the algebra Cl3, 0. 
However, duality between vectors and bivectors does not exist at higher dimensions, although 
there are also dualities among other spaces. 
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 15. HYPERBOLOIDAL GEOMETRY IN THE PSEUDO-EUCLIDEAN SPACE  
 
 The geometric algebra of the pseudo-Euclidean space 
 
 A vector in the pseudo-Euclidean space is an oriented segment in this space with 
direction and sense. The set of all segments (vectors) together with their addition 
(parallelogram rule) and the product by real numbers (dilation of vectors) has a structure 
of vector space, symbolised here by W3. Every vector in W3 has the form: 
 
 332211 evevevv ++=  
 
where ei are three unit perpendicular vectors, which constitute the basis of the space. 
The square of the norm of a vector is: 
 
 2

3
2
2

2
1

2 vvvv −+=  
 
which determines the geometric properties of this space, very different from the 
Euclidean space. Now we define an associative product (geometric or Clifford product) 
as a generalisation of those multiplications of vectors defined for the Euclidean and 
hyperbolic planes. Imposing the condition that the square of the norm must be equal to 
the square of the vector, we find: 
 
 22 vv =  
 

12
2

2
1 == ee   12

3 −=e  and  ijji eeee −=   for i ≠ j  
 
From the basis vectors one deduces that the geometric algebra generated by the space 
W3 has eight components: 
 
 ( ) 1231231233211,23 ,,,,,,,1 eeeeeeeClWCl ==  
 
 Let us see with more detail the product of two vectors: 
 
 ( ) ( ) 332211332211332211 wvwvwvewewewevevevwv −+=++++=  
 
  ( ) ( ) ( ) 121221313113232332 ewvwvewvwvewvwv −+−+−+  
 
I shall call the product (or quotient) of two vectors in W3 a tetranion. Tetranions are the 
even subalgebra of Cl2,1, which generalises complex and hyperbolic numbers to the 
pseudo-Euclidean space. Let t* be the conjugate of a tetranion t.  
 
 123123 edecebat +++=   123123* edecebat −−−=  
 
Then, the norm of t is given by: 
 
 2222* dcbattt +−−==  
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because 12

31
2
23 == ee  and 12

12 −=e . Consequently, 112 =e , according to the fact that it 
represents a Euclidean plane whereas 23e , 31e  have imaginary norm. 

Splitting the tetranion product of two vectors into the real and bivector parts, we 
obtain the inner (or scalar) product and the outer (or exterior) product respectively: 
 
 332211· wvwvwvwv −+=  
 
 ( ) ( ) ( ) 121221313113232332 ewvwvewvwvewvwvwv −+−+−=∧  
 
Here bivectors are also oriented plane surfaces indicating the direction of planes in the 
pseudo-Euclidean space. As before, vectors and bivectors are different things. Physics 
have also experienced this fact: in Minkowski’s space, the electromagnetic field is a 
bivector whereas the tetrapotential is a vector. On the other hand, oriented areas are, of 
course, bivectors. As a criterion to distinguish both kinds of magnitudes one also uses 
the reversal of coordinates, which changes the sense of vectors while leaving invariant 
bivectors. 
 Two vectors are said to be orthogonal if their inner product vanishes: 
 
 0· =⇔⊥ wvwv  
 
Thus, the outer product is the product by the orthogonal component and the inner 
product is the product by the proportional component: 
 
 ||· wvwv =   ⊥=∧ wvwv  
 
 The product of two bivectors yields a tetranion. The real and bivector parts can 
be separated as symmetric and antisymmetric products. The symmetric product is a real 
number whose negative value will be denoted here by the symbol •, whereas the 
antisymmetric product with negative sign, denoted here by the symbol ×, is also a 
bivector: 
 

 ( ) 1212313123232
1 wvwvwvvwwvwv +−−=+−=•  

 

 ( )vwwvwv −−=×
2
1   

 
 ( ) ( ) ( ) 122331312331122323122331121231 ewvwvewvwvewvwv −−−+−=  

 
 wvwvwv ×−•−=  
 
 The outer product of three vectors has the same expression as for Euclidean 
geometry and this is a natural outcome of the extension theory: the product u ∧ v ∧ w is 
the oriented volume generated by the surface represented by the bivector u ∧ v when it 
is translated parallelly along the segment w:  
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 123

333

222

111

e
wvu
wvu
wvu

wvu =∧∧  

 
Since 312123 eee = , the pseudoscalar 123e  has imaginary norm. 
 Finally, let us see how the product of three vectors u, v and w is. The vector v 
can be resolved into a component coplanar with u and v and another component 
perpendicular to the plane u-v: 
 
 wvuwvuwvu ⊥+= ||  
 
Let us analyse the permutative property now. For both Euclidean and hyperbolic planes 
we found u v w − w v u = 0. For the pseudo-Euclidean space the permutative property 
becomes: 
 

( )uwwuvuvwwvuuvwwvu +−=−=− ⊥⊥⊥  
 

wvuwuvwuv ∧∧=∧∧−=∧−= ⊥ 222  
 
 I take the same algebraic priorities as in the former chapter: all the abridged 
products must be operated before the geometric product, which is a convention adequate 
to the fact that the abridged products have to be developed as sums of geometric 
products. 
 
 
 The hyperboloid of two sheets (Lobachevskian surface) 
  
According to Hilbert (Grundlagen der Geometrie, Anhang V) the complete 
Lobachevsky’s “plane” cannot be represented by a smooth surface with a constant 
curvature as proposed by Beltrami. However, 
this result only concerns surfaces in the 
Euclidean space. The surface whose points are 
placed at a fixed distance from the origin in a 
pseudo-Euclidean space (the two-sheeted 
hyperboloid) is the surface sought by Hilbert that 
realises Lobachevsky’s geometry1. It is known 
that it has a characteristic distance like the radius 
of the sphere. Since all the spheres are similar, 
we only needed to study the unit sphere. 
Likewise, all the hyperboloidal surfaces  

2222 rzyx =−+  are similar and the 
hyperboloid with imaginary unit radius (figure 
15.1): 
 1222 =−− yxz  
 
                                                           
1 The reader will find a complete study of the hyperboloidal surface in Faber, Foundations of 
Euclidean and Non-Euclidean Geometry, chap. VII. “The Weierstrass model”. 

Figure 15.1
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 About the congruence of geodesic triangles 
 
 Two geodesic triangles on the hyperboloid having the same angles also have the 
same sides and are said to be congruent. This follows immediately from the rotations in 
the pseudo-Euclidean space, which are expressed by means of tetranions like 
quaternions are used for the rotations of Euclidean space. However, this falls out of the 
scope of this book and will not be treated. The reader should perceive, in spite of his 
Euclidean eyes9, that all the points on the hyperboloid are equivalent because the 
curvature is always the imaginary unit and the surface is always perpendicular to the 
radius. Thus the pole (vertex of the hyperboloid) is no special point, and any other point 
may be chosen as a new pole provided that the new axis are obtained from the old ones 
under a hyperbolic rotation. 
 
 

The hyperboloid of one sheet 
 

Whereas the Lobachevskian surface has imaginary unit radius, the one-sheeted 
hyperboloid (figure 15.9) has real unit radius and its equation is: 
 
 1222 =−+ zyx  
 
Under the central projection, the upper 
part of the hyperboloid is projected outside 
the Beltrami disk. However, we must take 
into account the fact that, if we want to 
represent the whole surface, each point in 
the projection plane has duplicity and 
represents two points: one on the upper 
part and the other on the lower part of the 
hyperboloid. This fact has significance and 
must be taken into account because the 
one-sheeted hyperboloid is a continuous 
surface. Something similar happens for the 
two-sheeted hyperboloid, but both sheets 
are not connected so that the 
Lobachevskian surface is only one of the sheets and projections apply to it. 

Points lying in the x-y plane, which separate the upper and lower parts of the 
one-sheeted hyperboloid, are projected onto the line at infinity in the plane 1=z  while 

                                                 
9 In fact, eyes are not Euclidean but a very perfect camera where images are projected onto a 
spherical surface. The principles of projection are likewise applicable to the pseudo-Euclidean 
space. Our mind, accustomed to the ordinary space (we learn its Euclidean properties in the first 
years of our life), deceives us when we wish to perceive the pseudo-Euclidean space.  

Figure 15.9 
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points at infinity on the hyperboloid are projected (as for Lobachevsky’s surface) onto 
the limit circle of the Beltrami disk. Geodesics are intersections of the hyperboloid with 
central planes10 z = a x + b y. There are three kinds of geodesics depending on the 
orientation of the plane: hyperbolas if a2 + b2>1, ellipses if a2 + b2<1, straight lines and 
at the same time generatrices of the hyperboloid if a2 + b2=1. The central projection 
maps every geodesic onto a line that either cuts the limit circle (hyperbola) or does not 
intersect it (ellipse), or is tangent to the limit circle (generatrix of the hyperboloid). 

The three former cases yield three different kinds of arc length: For hyperbolas 
the square of the arc length is negative; generatrices have null arc length; ellipses have 
real arc length such as Lobachevskian metric. Thus, the tangent plane to any point on 
the one-sheeted hyperboloid is a hyperbolic plane, in contrast with the fact that the 
tangent plane to any point on the Lobachevsky’s surface is Euclidean.  
 
 

Central projection and arc length on the one-sheeted hyperboloid 
 

Since geodesics are projected onto straight lines under the central projection, it is 
the suitable projection to calculate arc lengths. The deduction steps resemble those for 
the two-sheeted hyperboloid although some signs change. As before: 
 

 
z
xu =   

z
yv =  

 
From the hyperboloid equation 1222 =−+ zyx  we obtain: 
 

 
122 −+

=
vu

ux   
122 −+

=
vu

vy   
1

1
22 −+

=
vu

z  

 
The differential of the arc length on the hyperboloid is: 
 
 321 edzedyedxds ++=  
 

 ( ) ( )
( )222

2222
2222

1

121

−+

−++−
−=−+=

vu

dvudvduvuduvdzdydxds  

 
where the only difference with regard to Lobachevskian metric is a minus sign. 
 Geodesics are intersections of central planes with the hyperboloid and are 
projected onto straight lines under the central projection. So we take: 
 
 lukv +=  
 
 Substitution into the arc length differential gives: 

                                                 
10 This proof has been left as exercise 15.7. 
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12.4 From the decomposition theorem we have: 
 

( ) ( ) ( ) yxeyxyxeyxeeyx sincoscossinsin
2

1sin
2

1sin 1
11

1 +=−
−

++
+

=+  

 
12.5 From the analogous of de Moivre’s identity we have: 
 
 ( ) ψψψψ 4sinh4coshsinhcosh 1

4
1 ee +≡+  

 
 ψψψψψ 4224 sinhsinhcosh6cosh4cosh ++≡  
 
 ψψψψψ 33 sinhcosh4sinhcosh44sinh +≡  
 
12.6 The analytical continuation of the real logarithm is: 
  

 ( ) ( ) ( )yx
e

yx
e

eyx −
−

++
+

=+ log
2

1
log

2
1

log 11
1  

 

 ( )
yx
yxe

yx
−
+

+−= log
2

log
2
1 122   

 
It may be rewritten in the form: 
 

 
x
yeyx tanharglog 1

22 +−=   

 
12.7 For the straight path   z = t e1   we have: 
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For the circular path   z = cos t + e1 sin t   we have: 
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Using the indefinite integral, we find the same result:    
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12.8 The proof is analogous to the exercise 3.12: turn the hyperbolic numbers df, dz into 
hyperbolic vectors by multiplying them by e2 on the left. 
 
12.9 Let us prove by induction that any power with positive exponent fulfils the 
decomposition theorem: 
 

 ( ) ( )yxeyxeeyx −
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1
2

1 11
1  
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We have already seen that: 
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The fact that the powers with negative exponents also fulfil the decomposition theorem 
is also proven by induction in the same way as above: 
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  Nn ∈  

 
Therefore, the Laurent series also fulfils the decomposition theorem: 
 

 ( ) ( ) ( )∑∑ ∑
∞

−∞=
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and we have: 
 

 ( ) ( ) ( )yxfeyxfeeyxf −
−

++
+

=+
2

1
2

1 11
1  

 
13. The hyperbolic or pseudo-Euclidean plane 

 
13.1 If the vertices of the triangle are A(2, 2), B(1, 0) and C(5, 3) then: 
 
 AB = (−1, −2)  BC = (4, 3)  CA = (−3, −1) 
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CHRONOLOGY OF THE GEOMETRIC ALGEBRA 
 
 
 
1679 Letters from Leibniz to Huygens on the characteristica geometrica.  
1799 Publication of Om Directionens analytiske Betegning by Caspar Wessel with scarce 
diffusion. 
1805 Birth of William Rowan Hamilton in Dublin. 
1806 Publication of Essai sur une manière de représenter les quantités imaginaires dans 
les constructions géométriques by Jean Robert Argand. 
1809 Birth of Hermann Günther Grassmann in Stettin. 
1818 Death of Wessel 
1822 Death of Argand. 
1827 Publication of Der barycentrische Calcul by Möbius in Leipzig. 
1831 Birth of James Clerk Maxwell in Edinburgh. 
1831 Birth of Peter Guthrie Tait. 
1839 Birth of Josiah Willard Gibbs in New Haven. 
1843 Discovery of the quaternions by Hamilton. 
1844 Publication of the first edition of Die Lineale Ausdehnungslehre where Grassmann 
presents the anticommutative product of geometric unities (outer product). 
1845 Birth of William Kingdon Clifford in Exeter. 
1847 Publication of Geometric Analysis with a foreword by Möbius, memoir with which 
Grassmann won the prize that had been offered to whom could develop Leibniz’s 
characteristica geometrica. 
1850 Birth of Oliver Heaviside in London. 
1853 Publication of Lectures on Quaternions where Hamilton introduces the nabla 
(gradient) operator. 
1862 Publication of the second edition of Die Ausdehnungslehre. 
1864 Publication of A dynamical theory of the electromagnetic field by Maxwell, where 
he defines the divergence and the curl. 
1865 Death of Hamilton. 
1866 Posthumous publication of Hamilton’s Elements of Quaternions. 
1867 Publication of Elementary Treatise on Quaternions by Tait. 
1873 Publication of Introduction to Quaternions by Kelland and Tait. 
1873 Maxwell publishes the Treatise on Electricity and Magnetism where he writes the 
equations of electromagnetic field with quaternions. 
1877 Publication of Grassmann’s paper “Der Ort der Hamilton’schen Quaternionen in der 
Ausdehnungslehre”. 
1877 Death of Grassmann. 
1878 Publication of the paper “Applications of Grassmann's Extensive Algebra” by 
Clifford where he makes the synthesis of the systems of Grassmann and Hamilton. 
1879 Death of Maxwell. 
1879 Death of Clifford. 
1880 Publication of Lipschitz’s “Principes d’un calcul algébrique qui contient comme 
espèces particulières le calcul des quantités imaginaires et des quaternions”. 
1881 Private printing of Elements of Vector Analysis by Gibbs. 
1886 Publication of Lipschitz’ Untersuchungen über die Summen von Quadraten. 
1886 Publication of Gibbs’ paper “On multiple algebra”. 
1888 Publication of Peano’s Calcolo geometrico secondo l’Ausdehnungslehre di H. 
Grassmann preceduto dalle operazione della logica deduttiva. 
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1891 Oliver Heaviside publishes “The elements of vectorial algebra and analysis” in The 
Electrician Series. 
1895 Publication of Peano’s “Saggio di Calcolo Geometrico”. 
1901 Death of Tait. 
1901 Wilson publishes Gibbs’ lessons in Vector Analysis. 
1903 Death of Gibbs. 
1925 Death of Heaviside. 
1926 Wolfgang Pauli introduces his matrices to explain the electronic spin. 
1928 Publication of the paper “The Quantum Theory of Electron”, where Paul A. M. 
Dirac defines a set of 4×4 anticommutative matrices built from Pauli’s matrices. 
 
 
 
 
 
 This comparative diagram of life and works of the authors of (or related with) the 
geometric algebra visualises and summarises the chronology. The XIX century may be 
properly called the century of the geometric algebra. Note the premature death of 
Clifford, which caused the delay in the development of the geometric algebra throughout 
the XX century. 
 
 
 
               1800      1820      1840      1860      1880      1900      1920 
                 |         |         |         |         |         |         | 
 
Wessel*********************          
Argand***********************         
Hamilton            ******************************* 
Grassmann             *********************************** 
Maxwell                          ************************* 
Tait                             ************************************ 
Gibbs                                ********************************* 
Clifford                                ****************** 
Heaviside                                 ************************************** 
 
 
Om Directionens   | 
Essai sur ...       | 
Der barycentrische Calcul      | 
Die Ausdehnungslehre (1st ed.)         | 
Lectures on Quaternions                     | 
Die Ausdehnungslehre (2nd ed.)                  | 
Elements of Quaternions                           | 
Elementary Treatise on Quaternions                 | 
Treatise on Electricity and Magnetism                 | 
Der Ort der Hamilton’schen Quat.in der Ausdehnungslehre | 
Applications of Grassmann's Extensive Algebra           | 
Elements of Vector Analysis                               |    
The Elements of Vectorial Algebra and Analysis                 | 
Vector Analysis                                                     | 
 
 
 




