Enunciat 1. Simplifiqueu sense l'ús de nombres decimals. (Cal presentar les diferents etapes del càlcul).

a) \[\frac{\sqrt{10x^5} \cdot \sqrt{25y^2}}{\sqrt{2x^3y}} = \frac{5x^4 \cdot x^4}{5x} = 5x \]

b) \[\frac{\sqrt{5} - 4\sqrt{5}}{\sqrt{5} - 2} = \frac{\sqrt{5}(\sqrt{5} + 2)}{5 - 4} = 5 + 2\sqrt{5} - 4\sqrt{5} = 5 - 2\sqrt{5} \]

c) \[\frac{x^2 - x^2}{x^2 + 9x^2 + 7x - 6} = \frac{x^2(2x - 1)}{(x+2)(2x-1)(x+3)} = \frac{x^2(2x - 1)}{(x+2)(x+3)} = \frac{x^2}{x+3} \]

2x^2 + 5x - 3 = 0
\[x^2 = \frac{\sqrt{25 + 4 \cdot 2 \cdot 3}}{4} = \frac{\sqrt{37}}{4} \]
\[x = \frac{\sqrt{37}}{4} \]

Enunciat 2. Sigui \(p(x) = x^3 - 4x \). Trobeu \(x \) tal que \(p'(x) \) és màxim. (Amb el mètode de l'arrel doble), i feu un esquema gràfic raonat de la funció \(p(x) \).

\[p'(x) = 3x^2 - 4 \]
\[p''(x) = 6x \]

\[p''(0) = 0 \]

El màxim es troba en \(x_0 = \frac{2}{\sqrt{3}} \).
Enunciat 3. Calculeu el valor de \(\frac{2017}{2015} \).

\[
2 \cdot \left(\frac{2017}{2015} \right) = 2 \cdot \left(\frac{2017 - 2015}{2} \right) = 2 \cdot \frac{\cancel{2015}}{\cancel{2}} = 2017 \cdot \frac{1}{10} = 406.622
\]

Enunciat 4. Resoleu:

a) \(3x^2 + \frac{1}{4} \sqrt{5x^2 - \frac{37}{4}} \)

\[
\Rightarrow \frac{\sqrt{5x^2 - \frac{37}{4}}}{4} = 2 \Rightarrow 5x^2 - \frac{37}{4} = 16 \Rightarrow 20x^2 - 37 = 64 \Rightarrow 20x^2 = 101 \Rightarrow x^2 = \frac{101}{20} \Rightarrow x = \pm \sqrt{\frac{101}{20}} = \pm \sqrt{\frac{101 \cdot 2}{20 \cdot 2}} = \pm \sqrt{\frac{101}{20}}
\]

\[\text{Aprovació:}\]
\[
\left\{ \begin{array}{l}
3 \cdot \frac{5}{9} = \frac{15}{9} \\
1 + \sqrt{\frac{25}{9} - \frac{32}{4}} = \frac{5}{3} + \sqrt{\frac{25}{9} - \frac{32}{4}} = \frac{1}{3} + \sqrt{\frac{25}{9} - \frac{32}{4}} = \frac{1}{3} + \sqrt{\frac{25}{9} - \frac{32}{4}} = \frac{1}{3} + \frac{1}{2} \\
3 \cdot \frac{5}{6} = \frac{5}{2} \\
1 + \sqrt{\frac{5}{6} - \frac{32}{4}} = \frac{5}{6} + \frac{1}{2}
\end{array}\right. \]

b) \(2x^2 - 4x^2 + 5x - 5 = 0 \)

\[
\Rightarrow 2x^2 - 4x^2 + 5x - 5 = 0 \Rightarrow 2x^2 + 5x - 5 = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{4 \pm \sqrt{4^2 - 4 \cdot 2 \cdot (-5)}}{2 \cdot 2} = \frac{4 \pm \sqrt{16 + 40}}{4} = \frac{4 \pm \sqrt{56}}{4} = \frac{4 \pm 2 \sqrt{14}}{4} = 1 \pm \sqrt{14}
\]

Els valors de \(x \) són:
\[
2, 3, 2149
\]

c) \(\log_2 (x - 6)^3 - \log_2 \left(\frac{x}{3} \right) = 5 \)

\[
\Rightarrow \log_2 \frac{(x - 6)^3}{\frac{x}{3}} = 5 \Rightarrow \log_2 (x - 6)^3 = 5 \Rightarrow (x - 6)^3 = 2^5 \Rightarrow x - 6 = \sqrt[3]{32} \Rightarrow x = 9
\]

\[
\begin{array}{c|ccc}
9 & 2 & -5 & 2 \\
& 3 & -7 & 2 \\
& & 6 & \\
\hline
& -2 & -5 & 5 \\
\end{array}
\]

\[
x = \frac{-5 \pm \sqrt{25 - 4 \cdot 6 \cdot 5}}{6} = \frac{-5 \pm \sqrt{25 - 120}}{6} = \frac{-5 \pm \sqrt{-95}}{6}
\]
Enunciat 5. Si $0^\circ < \alpha < 90^\circ$ i $\sin \alpha = \frac{4}{5}$, calculeu $\cos(90^\circ - \alpha)$, raonant sobre la circumferència trigonomètrica sense calculadora. Comproveu el vostre resultat amb l'ús exclusiu de la calculadora.

\[
\cos(90^\circ - \alpha) = \sin \alpha = \frac{4}{5}
\]

Calcolador:
\[
\alpha = \arcsin \left(\frac{4}{5} \right) = 53^\circ 7' 48.37''
\]
\[
\cos(90^\circ - \alpha) = \cos(36^\circ 52' 11.63'') = 0.8 = \frac{4}{5}
\]

Enunciat 6. Demostreu que $\cos(90^\circ - x) = \sin x$ i trobeu tots els angles tals que $\sin(4x) + \cos(90^\circ - x) = 0$.

\[\text{Està demostrat en l'exercici 5 sobre la circumferència trigonomètrica}\]

\[\text{Alternative: } \cos(90^\circ - x) = \cos 90^\circ \cos x + \sin 90^\circ \sin x = 0 \cdot \cos x + 1 \cdot \sin x = \sin x\]

\[\sin 4x + \sin x = 0 \Rightarrow 2 \sin \frac{4x+x}{2} \cos \frac{4x-x}{2} = 0 \Rightarrow \sin \frac{5x}{2} \cdot \cos \frac{3x}{2} = 0\]

\[\Rightarrow \begin{cases} \sin \frac{5x}{2} = 0 \Rightarrow \frac{5x}{2} = m \cdot 180^\circ \Rightarrow x = \frac{m \cdot 360^\circ}{5} = \frac{m \cdot 72^\circ}{1} = m \cdot 72^\circ \\
\cos \frac{3x}{2} = 0 \Rightarrow \frac{3x}{2} = 90^\circ + m \cdot 180^\circ \Rightarrow x = \frac{180^\circ + m \cdot 360^\circ}{3} = \frac{60^\circ + m \cdot 120^\circ}{1}
\end{cases}\]
Enunciat 7. En un triangle \(\triangle ABC\) es té \(AB = 4, AC = 7\) i \(\hat{A} = 75^\circ\), Calculeu la seva àrea.

\[
\begin{align*}
BT &= 4 \cdot \sin 75^\circ \\
\hat{A} \text{cte} &= \frac{AC \cdot BT}{2} = \frac{7 \cdot 4 \cdot \sin 75^\circ}{2} = 14 \cdot \sin 75^\circ \approx 13.523
\end{align*}
\]

Enunciat 8. Resoleu les dues qüestions següents:

a) Trobeu gràficament les coordenades del vector \(\vec{x}\) en la base \(\vec{u}, \vec{v}\) i escriuui el seu valor numèric.

b) Dibuixeix el vector \(3\vec{c} - 2\vec{d} + \vec{b}\)

\[
-(\vec{a} + \frac{1}{4}\vec{c}) - (1 + \frac{1}{2})\vec{b} = -\frac{9}{4}\vec{a} - \frac{3}{2}\vec{b} \Rightarrow \text{coordenades} \left(-\frac{3}{4}, -\frac{3}{2}\right)
\]